Australian Journal of Crop Science

AJCS 7(11):1682-1692 (2013)

Effect of salinity and alleviating role of gibberellic acid (GA₃) for improving the morphological, physiological and yield traits of rice varieties

Khadija M. Misratia¹, Mohd Razi Ismail^{1*}, Md Abdul Hakim^{2,3}, Mohamed Hanafi Musa² and Adam Puteh¹

¹Deptartment of Crop Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor DE, Malaysia ²Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia ³Department of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

³Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

*Corresponding author: razi@putra.upm.edu.my

Abstract

An experiment was conducted in pots at the glasshouse of the Universiti Putra Malaysia during 2010 - 2011 to determine the salinity tolerance of two rice varieties exposed to GA₃. One internationally recognised salt tolerant rice variety (Pokkali) and one Malaysian well-cultivated rice variety were studied under five salinity levels with GA₃. The results revealed that the studied morphological traits such as plant height, tillers plant⁻¹, leaves plant⁻¹, leaf length and plant dry and the physiological attributes, chlorophyll *a*, *b*, total chlorophyll contents, photosynthetic rates, stomatal conductance and transpiration rate were reduced significantly with increasing saline condition in both of varieties. The transpiration rate was also reduced in both varieties, which showed less intercellular CO₂ at higher salinity. Identical findings were also noted for the vapour pressure deficit in leaves (VPDL). MR219 showed more slat affected than Pokkali in some parameters but the saline effects alleviated when GA₃applied. The present study concludes that GA₃, a safe plant growth regulator, could be effectively sprayed on rice variety MR219 in saline belts as it adequately proved its unique salinity alleviating role.

Keywords: Salinity, Gibberellic Acid, Rice, Malaysia

Abbreviations: GA₃_Gibberellic acid, VPDL_vapour pressure deficit in leaves, PGR_plant growth regulator, LSD_Least Significant Difference.

Introduction

Soil salinity is a global eco-threat to sustainable agriculture, and is also increasing over the time. It may be due to uses of fertilizers, soil erosion, rising in sea level from greenhouse emission leading to global warming and ice-belt melting, and natural disasters causing submersion of croplands under sea water (Brinkman, 1980). Salinity reduces growth and finally causes death through osmotic, ionic and nutritional imbalances (Afifi et al., 2010). Sensitive varieties loss vigour quickly by losing water from the stress shocks. But resistant genotypes can tolerate well and survive in severely saline soils (Blaylock, 1994). This eco-adjustment attracts global researchers to quest for the salt tolerant cultivar(s) from the surroundings. Gibberellic acid (GA₃), a safe plant growth regulator (PGR), alleviates salinity-induced inhibition of seed germination of glycolphytic plants (Basalah and Mohammad, 1999). Reversal of the harmful effects of NaCl on seed germination (Tipirdamaz et al., 1995) and seedling growth (Kaur et al., 1998) due to exogenous GA₃ are attributed to the stimulation of α -amylase activity. So, attention is now focused on uses of GA₃ in regulating plant responses to the external environment and controls a number of stress-induced genes (Naqvi, 1999). Innumerable works proved the potential of GA₃ to synergistically improve crop performance under normal conditions. But the focus on spraying during salt

stress is scarce. A few studies; however, pinpointed the ability of its foliar pre-treatment to overcome adversities of NaCl (Chakraborti and Mukherji, 2003) as it alleviates the pessimistic effects on pigment contents and water use efficiency (Aldesuquy and Ibrahim, 2001).

More than half of the world population depends on rice as staple food. In Asia alone, there are near two billion consumers (Rao et al., 2007). In Malaysia, it is the third top raking crop covering 205,548ha (Ministry of Agriculture, 2007) meeting about 70% of the local demand (Bernama, 2008). To fulfill the increasing future need, Malaysia must expand rice area (Selamat and Ismail, 2009). It is an anxiety that the salinity may affect 100,000 ha of rice area by 2056 (Selamat and Ismail, 2008). Continuous intrusion of saline water may result in dwindling rice area leading to food shortages in domestic and global markets. So, researchers and policy makers must pave ways for the efficient exploitation of saline areas. The assortment of salt tolerant rice varieties might be its finest access to bring such areas under rice (Shereen et al., 2005). By now, much works are done to realize the role of salinity on seed germination, growth, reproduction and population dynamics of crops (Khan et al., 2002). Nonetheless, information on Malaysian rice varieties for saline zones is scanty. But the enhancement of salt tolerance in crops is challenging as it is linked with multiple physio-biochemical pathways. Therefore, the present work was undertaken to evaluate the rice varieties as well as fruitful rice production strategies on the Malaysian saline belt using spraying GA₃.

Results and Discussions

Effect of salinity and GA₃ on the morphological traits

Plant height (cm)

The plant height across all salinity levels increased as proceeded towards the 6^{th} week after GA₃ treatment. In Pokkali, the maximum heights (168 and 164 cm) were noted during the 4th and 6th weeks followed by MR219. Thus, GA₃ was much effective in having taller plants (Table 1). The overall observation also shows that Pokkali was taller than MR219. Irrespective of varieties, plant height was observed 179.9 and 174 cm in Pokkali and MR219, respectively under control treatment. But salinity decreased the plant height and that was proportional to the imposed salinity level. In the saline condition, Pokkali produced significantly taller plants than MR219. But under the higher salinity (200 mM), both varieties showed more decrease in height, 138.8 and 114.9 cm, in Pokkali and MR219, respectively (Table 2). The varieties responded well to GA₃ in recording taller plants as 178.4 and 176.1 cm in Pokkali and MR219, respectively, which was statistically similar. However, dwarf plants were observed in both varieties without GA₃ treatment (Table 3). GA₃ showed its salinity alleviating role significantly. In the non-saline conditions, height increased linearly with application of GA₃. But due to GA₃ application, the height was increased significantly under salinity. Plants at 50-200 mM GA₃ showed 124, 127.4, 115.6 and 109 cm height, respectively. By application of GA₃ the height increased 192.1, 181.6, 160.0 and 144.7cm, respectively. The decreasing trend in height was noted with the increased salinity. The effect of GA3 was also consistent over the salinity levels (Fig. 1). The results showed a decreasing trend in height with increasing levels of salinity. But GA3 alleviated the harmful effects of salinity and enhanced plant height. The height was higher in Pokkali than MR219 across salinity levels and GA₃. That could be predicted due to genetic potentials of varieties. Such variations for salt tolerance in rice and other species were already reported (Moud and Maghsoudi, 2008). It is clear that both varieties had high degree of pessimism for taller plants using GA3 in saline condition. Reports are also available that salinity can reduce height in rice (Motamed et al., 2008). Gain et al. (2004) also noted that height was reduced significantly at 7.81dS m⁻¹ salinity. In our study, both varieties were more responsive to GA₃ and to increase the height. Similar results were claimed by Watanabe and Saigusa (2004) that height increased significantly due to GA3 over salinity. The results of this study are also in agreement with Suge (1985) who found that GA₃ enhanced growth through forming new cells in the intercalary meristem.

Tillers plant⁻¹ (no.)

It was significantly different (P<0.05) in various sowing dates as well as in all forms of interactions. Maximum tillers (5.67-5.46) were produced during the 2^{nd} and 4^{th} weeks after GA₃ treatment in MR219 and Pokkali, respectively. But during the 6^{th} week, both the varieties produced the least tillers. That might be due to alleviating impact of GA₃ during

the early growth (Table 1). Tiller number was decreased significantly as the salinity raised from 50 to 200 mM. The NaCl applied at 100-200 mM reduced the tillers (4.6-1.9) in MR219. Pokkali produced a little bit more tillers than MR219 under the salinity levels (Table 2). GA_3 significantly increased the tillers plant⁻¹, 5.4 and 5.2 in Pokkali and MR219, respectively. But the varieties differed notably among themselves. The less tillers were noted without GA₃ (Table 3). The linear regression amid salinity and GA₃ showed the declined trend for tillers plant⁻¹ due to salinity. But GA₃ showed increasing trend over the salinity. Thus, it could be predicted that GA₃ was effective in overcoming the harmful effects of salinity (Fig. 1). The interaction of variety \times salinity \times GA₃ was significant. At 50-200 mM, MR219 recorded 6.2, 4.4, 1.9 and 1.6 tillers, respectively. But GA₃ raised the tillers notably, 6.8, 4.9, 2.4 and 2.3, respectively. Pokkali, at 50-200 mM had less, 6.1, 5.2, 2.3 and 1.9, respectively. In this situation, GA3 enhanced tillers of Pokkali as 7.4, 6.2, 2.7 and 2.1. More tillers were produced in Pokkali than MR219 across GA₃ and salinity treatments (Table 4). Reports are available on fall in the growth rate due to salinity (Munns and James, 2003). The fall in tillers are occurred due to salinity over the control (Castillo et al., 2007). In the present study, GA₃ had optimistic effects on both the varieties. Similar results were argued by Emongor, (2007) that GA₃ was positive to enhance many growth and development processes. Kariali and Mohapatra, (2007) also noted that tillering in rice was dynamic, adjustable and phytohormones played a vital role in it. But the foliar spray of GA₃ changed the allocation pattern of carbohydrates in shoots, and thus inhibited tillers in rice (Yin et al., 1997).

Plant dry weight (g pot⁻¹)

The highest dry weights were produced with GA₃: 14.4 and 14.2g pot⁻¹ in MR219 and Pokkali, respectively, during the 6th and 4th weeks. Both varieties showed least affected at 50 mM salinity. However, further increase in the salinity reduced the dry weights: 5.6 and 4.8g pot⁻¹ in Pokkali and MR219, respectively (Table 2). Both of the varieties (Pokkali and MR219) increased dry weights (13.59 and 11.60g pot⁻¹) when GA₃ applied but had less weight without GA₃ (Table 3). The linear regression showed the declining pattern in different salinity levels without GA₃. But it raised the dry weight over the salinity (Fig. 1). The dry weight decreased significantly with increasing the salinity levels. In MR219, under 50-200 mM salinity, the dry weights were decreased over the control: 10.8, 10.5, 5.5 and 4.2g pot⁻¹, respectively. However, under GA₃ this variety produced more dry weights: 13.4, 11.7, 8.3 and 5.4g pot⁻¹ at salinity levels (Table 4). Pokkali produced the lower dry weights: 11.4, 9.8, 8.2 and 4.8g pot⁻¹ under same saline condition but GA₃ had alleviating impact as it significantly increased the dry weights: 14.3, 14.3, 10.9 and 6.3g pot⁻¹, respectively (Table 4). The fall in the dry weight was echoed in the elevated metabolic energy cost and reduced carbon gain due to salinity (Karimi et al., 2005); thus, raised the harms of salinity for biomass production linearly in rice (Carmona et al., 2009). The reduced dry weight was also associated with photosynthetic rate (Ashraf, 2004). The stress suppressed plant height, leaf number and size, and tillers, which finally lowered the dry matter (Khan and Abdullah, 2003). Iqbal, (2008) noted reduction in dry weight of shoot due to salinity. Salinity lowered the growth rate and biomass production (Lin and Kao, 2001). Pattanagul and Thitisaksakul, (2008) also argued about reduce in dry biomass under higher salt stress, and that was possibly for the decrease in carbohydrate build

Table 1. Growth traits of two rice varieties at various weeks after GA₃ application across salt concentrations.

Vegetative		LCD		W	eeks after	GA ₃ applica	tion		
growth	SE	LSD		MR219		Pokkali			
traits		(3%)	2^{nd}	4^{th}	6^{th}	2^{nd}	4^{th}	6^{th}	
Plant height (cm)	2.15	13.080	125 d	148 c	151 bc	146 c	164 ab	168 á	
Tillers plant ⁻¹ (no.)	0.12	0.717	5.67 a	5.46 a	4.67 b	5.63 a	5.56 a	3.86 c	
Plant dry wt. (g pot^{-1})	0.77	4.705	7.4 c	10.2 abc	14.4 a	9.2 bc	14.2 a	12.5 ab	

In each row, the means with the common letter do not differ significantly at the 5% level of probability.

Fig 1. Linear regression among salinity levels and GA₃ on plant height, tillers plant⁻¹ and plant dry matter of two rice varieties

up caused by reduced carbon assimilation. In our study, Pokkali and MR219 showed reduction in dry weight at different salinity levels with no GA_3 . Conversely, plants under GA_3 treatments increased the dry weight. These results are in agreement with the findings of Ashraf et al. (2002) that GA_3 in salt stressed plants showed an increased photosynthetic capacity- a vital factor for higher dry matter synthesis.

Effect of salinity and GA₃ on physiological traits

Chlorophyll contents (mg g⁻¹ of fresh weight)

Chlorophyll a content

It differed significantly (P<0.05) for the interaction of variety × salinity, variety × GA3, salinity × GA3, and variety × salinity × GA3. The higher chlorophyll *a* (2.36 mg g⁻¹) was found in Pokkali during the 2nd week. Similar trend was also observed in MR219; being higher during the 2nd week and reduced at the 4th and 6th weeks. Those could be due to salinity causing yellowing, abscission and wilting of foliage

(Table 5). The chlorophyll *a* in both varieties was significantly higher under saline control condition. Both varieties showed insignificant variation of chlorophyll *a* in control condition and 50 mM salinity by having 2.04 and 2.0, and 1.78 and 1.70 mg g⁻¹, respectively. Thereafter, the raised salinity declined the chlorophyll *a* (Table 6). Pokkali under GA₃ spraying gave significantly higher chlorophyll *a* (1.86) than control. Similarly, MR219 had chlorophyll *a* (1.62) (Table 7).

The interaction of variety × salinity × GA3 had significant disparity for it. The raised stress notably lessened it in both varieties, in which MR219 had relatively less chlorophyll *a*: 1.47, 1.26, 1.12 and 1.01 at 50-200 mM, respectively. GA3 notably enhanced and produced 1.94, 1.49, 1.47 and 1.16 chl*a* at 50-200 mM, respectively. Pokkali at same salinity also showed least chl*a*: 1.82, 1.42, 1.17 and 1.08. But GA₃ raised it notably: 2.25, 1.64, 1.49 and 1.73 in Pokkali at 50-200 mM, respectively (Table 8). The response of a variety to salinity is predicted as its genetic background to tolerance (Moud and Maghsoudi, 2008). The ability of a tolerant variety to maintain higher level of chlorophyll *a* is probably one of the vital mechanisms aiding to salinity tolerance,

Variation		Plant	Tillers	Plant
v arrefies \times Salt conc. (mM)		height	plant ⁻¹	dry wt.
San conc. (II	111 v1)	(cm)	(no.)	$(g pot^{-1})$
MR219	0	174.0 ab	9.1 a	18.4 a
	50	145.4 de	6.5 c	12.1 bc
	100	148.4 d	4.6 e	11.1 bc
	150	126.7 f	2.2 fg	6.9 de
	200	114.9 g	1.9 g	4.8 e
Pokkali	0	179.9 a	8.1 b	19.7 a
	50	170.7 b	6.7 c	12.8 b
	100	160.5 c	5.7 d	12.1 bc
	150	148.9 d	2.5 f	9.6 cd
	200	138.8 e	2.0 g	5.6 e
SE		2.775	0.152	0.998
LSD 5%		7.771	0.426	2.795

Table 2. Growth traits of two rice varieties as affected by different salt concentrations

In each column, the means with the common letter do not differ significantly at the 5% level of probability.

Fig 2. Linear regression amid salinity levels and GA_3 on the photosynthesis, transpiration, chlorophyll contents, stomatal conductance, intercellular CO_2 and VPDL of two rice varieties.

which results in higher photosynthesis vis-á-vis carbohydrate production (Datta et al., 2009).

Considering the chlorophyll a as the main pigment (Santo, 2004), reduce in the chlorophyll could probably be one of the vital cause of reduced photosynthesis under salt stress as noted in rice (Moradi and Ismail, 2007). Datta et al. (2009) also observed significant differences in chlorophyll *a* content, which could be predicted as the abilities of both varieties to maintain higher chlorophyll *a*, and the optimistic response to GA_3 .

Chlorophyll b content

 GA_3 showed significant positive role on chlorophyll *b*. Its level found to be higher (7.32) in MR219 during the 2nd week. Then, less chlorophyll b was found during the 6^{th} week in both the varieties (Table 5). MR219 produced 5.13, 4.17, 1.94 and 1.44 chlorophyll b followed by 3.58, 2.97, 1.95 mg g⁻¹ and 1.71 in Pokkali at 50-200 mM, respectively (Table 6). The relation of variety \times GA₃ showed that chlorophyll *b* was notably low without application of GA3, whereas it increased to 4.16 and 3.97, in MR219 and Pokkali, under GA₃ (Table 7). The interaction of variety \times salinity \times GA3 had notable disparities for it. The rising salinity significantly arrested in both varieties. In the saline conditions, MR219 produced 4.29, 4.0, 1.38, 1.25 chlorophyll b at 50-200 mM, respectively. However, MR219 produced greater chlorophyll b with GA₃, 5.96, 4.36, 2.50 and 1.64, respectively under the same saline conditions. It was noted that Pokkali produced: 2.51, 2.13, 1.65 and 1.30 at 50-200 mM, respectively, but with GA_3 application higher chlorophyll b were observed (4.65, 3.82, 2.26 and 2.12) (Table 8). The photosynthetic pigments were decreased at different salinity levels (Khan, 2003). The results are similar with those of Jaleel et al. (2008b). The decrease in chlorophyll content in the stressed plants could be due to increased activity of the chlorophylldegrading enzyme chlorophyllase (Reddy et al., 1986).

Total chlorophyll content

Across the salinity levels and GA3, it followed the same pattern as in the chlorophylls a and b, being higher (9.28) during the 2nd week in MR219 followed by Pokkali (6.63). The total chlorophyll is the combination of chlorophylls a and b. So, both (a and b) were increased linearly, which ultimately increased the total chlorophyll contents (Table 7). GA₃ had positive effect by raising the chlorophyll contents. The positive effect of GA₃ was constant by having more chlorophyll than stressed condition (Fig. 2). The interaction of variety × salinity × GA₃ appreciably reduced the total chlorophyll content. MR219 obtained less chlorophyll content: 5.76, 5.26, 2.51 and 2.26 mg g⁻¹, respectively under 50-200 mM. However, with GA₃ application the chlorophyll content was increased: 7.91, 5.84, 3.97 and 2.79 at 50-200 mM, respectively. Pokkali also produced: 4.34, 3.55, 2.82 and 2.38 mg g⁻¹ under 50-200mM, while GA₃ raised the chlorophyll: 6.91, 5.45, 3.76 and 3.85, respectively (Table 8). The effects of salinity on chlorophyll synthesis varied with the levels of the stress (Santo, 2004). But significant differences amid genotypes were noted by Datta et al. (2009). Few conflicting reports pinpointed that the amounts of chlorophyll a, b and their total were higher under salinity conditions than the control one. Hence, the present findings disagree with Santo (2004). The depletion may be as the result of the hang-up of chlorophyll biosynthesis following an increase in ethylene production brought by the elevated NaCl content (Khan, 2003). It may be caused that the GA₃

generated sweetening of ultra-structural morphogenesis of plastids coupled with the retention of chlorophyll and delay of senescence caused by GA_3 (Arteca, 1997). Goswami (1995) claimed that the salinity caused the reduce in chlorophyll *a* and carotenoids in cotton but GA_3 raised those significantly. Radi et al. (1989) argued that in maize, chlorophylls (*a*+*b*) and carotenoids go up due to salinity stress but GA_3 caused a further rise in those pigments.

Photosynthetic rate (\mumol m⁻² s⁻¹)

Salinity significantly inhibited photosynthesis in both varieties. But the rates were higher (8.09 and 6.49 µmol m⁻² s⁻¹ ¹) under saline condition. However, $GA_3 \times$ variety increased the rates in both the varieties. The higher rate (4.86) was in MR219 followed by Pokkali (3.89) under GA₃ (Table 7). The linear regression visualizes that the rise in salinity declined photosynthesis (Fig. 2). The Photosynthetic rate significantly differed in the interaction of variety × salinity × GA₃. The photosynthesis notably decreased in both the varieties with increased salinity levels. But GA₃ showed the alleviating effect in both varieties. MR219 showed significantly higher photosynthesis under GA3 treatments (6.69, 4.27, 3.10 and 1.34µmol m⁻² s⁻¹) at 50-200 mM salinity, while in Pokkali the GA₃ raised the rate by noting higher values (4.71, 3.59, 2.28 and 1.78 μ mol m⁻² s⁻¹) at 50-200 mM, respectively, compared to no GA₃ condition (Table 8). The reasons of decreased photosynthetic rate might be attributed to the fall in chlorophyll contents, stomatal closure, transpiration, CO₂ assimilation by leaf tissues and finally, plant growth (Misra et al., 2002; Tardieu, 2005). The present findings opposed Yeo et al. (1985) who opined that photosynthesis was hardly retarded by salinity. Others claimed a notable fall under salinity (Kapulnik and Heuer, 1991). Such a decline was also pointed by Drew (1990). The photosynthesis fall could be crucial under salt stress (Moradi and Ismail, 2007).

Stomatal conductance (mmol $m^{-2} s^{-1}$)

There was significant disparities (P<0.05) for the interaction of variety \times weekly observation, variety \times salinity, variety \times GA_3 , salinity × GA_3 , and variety × salinity × GA_3 . The weekly study across the salinity levels and GA₃ noted higher conductance (0.08 µmol m⁻² s⁻¹) in MR219 during the 2nd and 4th weeks. But at the 6th week, the reduce was noted in both the varieties (Table 5). It could be due to drop in chlorophyll (a+b) contents, photosynthesis and unpleasant effects of salinity at the 6th week. The salinity levels notably inhibited the stomatal conductance in both varieties. But as the salinity was raised up to 200 mM, a sharp decline was noted in both the varieties (Table 6). GA3 improved the stomatal conductance for both the varieties. But the higher value (0.09) was in MR219, while Pokkali showed reduced conductance (0.05 mmol $m^{-2} s^{-1}$) (Table 7). The linear regression shows decreasing trend in conductance with increasing salinity under no GA3 conditions. But the salinity regression and GA₃ lines intersected at 200 mM indicating that GA₃ was not so effective at higher salinity conditions (Fig. 2). The interaction of variety \times salinity \times GA₃ showed significant effects in both varieties. In saline condition, MR219 had low conductance, 0.06, 0.03, 0.02 and 0.01 mmol $m^{-2} s^{-1}$ at 50-200mM, respectively. But under GA₃ treatments we noted greater conductance, 0.14, 0.06, 0.03 and 0.02 mmol m⁻² s⁻¹ at saline condition. While Pokkali recorded 0.04 mmol $m^{-2} s^{-1}$ at 50 and 100 mM but at the higher salinity (150 and 200mM) Pokkali noted 0.01mmol m⁻² s⁻¹. In this study,

Table 3. Growth traits of two rice	varieties under	the influence	of GA
---	-----------------	---------------	-------

varieties x		Plant height	Plant height Tillers plant ⁻¹					
GA ₃ (150 pp	om)	(cm)	(no.)	$(g \text{ pot}^{-1})$				
MR219	0	107.7 c	4.5 b	9.768 b				
	GA_3	176.1 a	5.2 a	11.60 b				
Pokkali	0	141.1 b	4.6 b	10.37 b				
	GA ₃	178.4 a	5.4 a	13.59 á				
SE		1.755	0.096	0.631				
LSD 5%		4.915	0.269	1.768				

In each column, the means with the common letter do not differ significantly at the 5% level of probability.

Table 4. Growth traits of two rice varieties under the interaction of variety \times salinity \times GA₃

Diag	Salinity	Plant he	ight (cm)	Tillers p	lant ⁻¹ (no.)	Plant dry v	weight (g pot ⁻¹)
Kice	levels	GA ₃ (pp	m)	GA ₃ (pp	m)	GA ₃ (ppm))
varieties	(mM)	0	150	0	150	0	150
MR219	0	138.2	209.9	8.8	9.3	17.6	19.1
	50	102.3	188.4	6.2	6.8	10.8	13.4
	100	112.7	184.2	4.4	4.9	10.5	11.7
	150	96.78	156.7	1.9	2.4	5.5	8.3
	200	88.4	141.4	1.6	2.3	4.2	5.4
Pokkali	0	153.6	206.2	7.7	8.6	17.5	22
	50	145.7	195.7	6.1	7.4	11.4	14.3
	100	142.1	179	5.2	6.2	9.8	14.3
	150	134.4	163.3	2.3	2.7	8.2	10.9
	200	129.6	148	1.9	2.1	4.8	6.3
SE		3.925		0.215		1.412	
LSD (5%)		10.99		0.603		3.953	

Table 5. Physiological traits	in variou	s weeks after sowing	across varieties	salinity and GA ₂
Lable et l'hybrological dans	m runou	s weeks areer so wing	across farious	building und Orig

Dhygiological		LSD		We	eeks after G	A ₃ applicat	ion	
rilysiological	SE	(5%) -	I	MR219]	Pokkali	
trans		(3%)	2^{nd}	4^{th}	6^{th}	2^{nd}	4^{th}	6 th
Chlorophyll <i>a</i>	0.520	0.320	1.96 b	1.87 b	0.49 c	2.36 á	2.18 ab	0.43 c
(mg g^{-1})								
Chlorophyll b	0.170	1.052	7.32 a	2.18 cd	1.71 d	4.27 b	2.85 c	2.18 cd
$(mg g^{-1})$								
Total chlorophyll (mg g ⁻¹)	0.181	1.136	9.28 a	4.07 c	2.20 d	6.63 b	5.03 c	2.61 d
Photosynthetic rate (μ mol m ⁻² s ⁻¹)	0.013	0.078	5.88 a	4.64 c	1.99 e	5.80 b	3.59 d	1.10 f
Stomatal conduct.	0.0002	0.111	0.08 a	0.08 á	0.04 c	0.05 b	0.04 c	0.02 d
$(\text{mmol } \text{m}^{-2} \text{ s}^{-1})$								
Transpiration rate	0.0034	0.035	1.98 a	1.45 b	0.91 e	1.35 c	0.99 d	0.72 f
$(\text{mmol } \text{m}^{-2} \text{ s}^{-1})$								
Intercellular CO ₂	0.634	4.98	248.4 a	228.6 b	144.6 f	200.5 c	159.5 d	187.4 e
(µmol mol ⁻¹)								
VPDL (KPa)	0.0012	0.011	2.44 c	2.11 d	1.38 f	2.52 b	2.69 a	1.81 e

In each row, the means with similar letters do not differ significantly at the 5% level of probability.

 GA_3 slightly improved conductance and recorded 0.04, 0.05, 0.02 and 0.01mmol m⁻² s⁻¹ in Pokkali (Table 8). The reduction in growth is generally observed in plants under salinity. It may be partly due to lower water potential in cells, which caused stomatal closure and limited CO₂ assimilation. Salinity leads to dehydration and osmotic stress resulting in stomatal closure, reduced CO₂ supply and a high production of reactive oxygen species causing irreversible cellular damage and photo-inhibition (Darwish et al., 2009).

Transpiration rate (mmol $m^{-2} s^{-1}$)

The transpiration rate across the salinity and GA₃ recorded higher rate (1.98) in MR219 during the 2nd followed by 4th weeks (1.45µmol m⁻² s⁻¹). But Pokkali had low rates from the 2nd - 6th weeks. Both the varieties produced poor transpiration rates during the 6th week (Table 5). Both the varieties had better transpiration rate under control condition and it sharply declined with salinity (Table 6) but the rate increased significantly under GA₃. The highest rate (1.83) was noted in MR219 due to the positive impact of GA₃ but Pokkali was eventually 2^{nd} (1.10 mmol m⁻² s⁻¹). Both varieties showed reduced transpiration rate at no GA₃ condition (Table 7). The linear regression line shows decreasing trend in transpiration with the increase in salinity without GA₃. But higher rate was noted in GA₃ compared to the saline conditions. That increase could be predicted due to GA₃ and it was steady in response to salinity. However, at the highest salinity (200 mM) GA₃ failed to play its usual salinity relieving role (Fig. 2). The interaction of variety \times salinity \times GA₃ was remarkable. The increase in salinity significantly lowered the rates in both varieties MR219 at 50-200mM which had low rates: 1.60, 0.83, 0.57 and 0.22 mmol m⁻² s⁻¹, respectively, while under GA₃ had higher rates: 2.81, 1.46, and 0.87 and 0.49 mmol m⁻² s⁻¹ at 50-200 mM, respectively. In Pokkali, GA₃ acted positively and notably raised transpiration: 1.38, 0.44 and 0.39mmol m⁻² s⁻¹ at 100-200mM, respectively. In that case, Pokkali had non-significant differences for transpiration rate amid 50 mM and GA₃ (Table 8).

Table 6. Physiological traits of two rice varieties as affected by salt concentrations.

varieties × Salt conc. (mM)		Chloro- phyll a (mg g ⁻¹)	Chloro- phyll b (mg g ⁻¹)	Total chloro- phyll (mg g ⁻¹)	Photo- synthetic rate (µmol m ⁻² s ⁻¹)	Stomatal conduct. (mmol m ⁻² s ⁻¹)	Transpi -ration rate (mmol m ⁻² s ⁻¹)	Inter- cellular CO_2 (μ mol mol^{-1})	VPDL (KPa)
MR219	0	1.78 b	5.99 a	7.77 a	8.09 a	0.17 a	2.82 a	273.9 a	2.25 e
	50	1.70 bc	5.13 b	6.83 b	5.55 c	0.10 b	2.21 b	274.0 a	2.42 c
	100	1.37 de	4.17 c	5.55 c	3.70 e	0.05 d	1.15 e	204.9 e	2.17 f
	150	1.29 e	1.94 e	3.24 e	2.44 g	0.03 f	0.72 g	155.8 f	1.73 i
	200	1.08 f	1.44 e	2.52 f	1.06 j	0.01 g	0.36 i	127.6 g	1.34 j
Pokkali	0	2.04 a	5.28 b	7.28 ab	6.49 b	0.09 c	2.09 c	255.6 c	2.39 d
	50	2.00 a	3.58 cd	5.62 c	4.25 d	0.04 e	1.06 f	216.5 d	2.79 a
	100	1.53 cd	2.97 d	4.50 d	3.29 f	0.05 d	1.24 d	258.0 b	2.66 b
	150	1.33 de	1.95 e	3.29 e	1.93 h	0.01 g	0.39 h	98.06 h	1.92 h
	200	1.40 de	1.71 e	3.11 ef	1.52 i	0.01 g	0.34 j	84.13 i	1.95 g
SE		0.067	0.223	0.240	0.013	0.002	0.005	2.281	0.002
LSD 5%		0.187	0.624	0.674	0.036	0.005	0.016	0.819	0.005

In each column, the means with similar letters do not differ significantly at the 5% level of probability.

The reduction in transpiration might be ionic toxicity which is caused by an undue quantity of salt entering the transpiration stream and eventually injured cells in the transpiring leaves and may further reduce growth (Munns et al., 2006). Due to salinity, stressed plants reduce transpiration and uptake of Na⁺ (Flowers and Yeo, 1989). This reduce with the increased salinity can be imputed to a reduced capacity to absorb H₂O by the decrease in the osmotic component of soil water potential (Tester and Davenport, 2003). In this study, the alleviating role of GA₃ showed enhanced transpiration rate. Khan, and Azuma, (2003) also viewed that GA₃ relieved the adverse effects of salinity and maintained transpiration rate in rice.

Intercellular CO_2 (µmol mol¹)

The interactions of variety × weekly observation, variety × salinily, variety \times GA₃, salinity \times GA₃, and variety \times salinity \times GA₃ showed significant differences (P<0.05). The CO₂ concentration across the salinity levels and GA₃ was higher (248.4 μ mol m⁻²) in MR219 during the 2nd week followed by 4th week (228.6 μ mol m⁻²). In Pokkali, lower CO₂ was found during the 2^{nd} - 6^{th} weeks. The results clarified that both the varieties had lower CO₂ contents during the 6th week (Table 5). The intercellular CO_2 was notably higher in MR219 under saline control condition and 50mM: 273.9 and 274 mol mol⁻¹, respectively followed by 255.6 and 258µmol mol⁻¹ s⁻¹ in Pokily with H₂O and 100mM, respectively (Table 6). GA₃ remarkably enhanced CO₂ by noting 234.7 µmol mol⁻¹ in MR219. In Pokkali, GA3 also raised CO2 (182.6 µmol mol⁻¹ s ¹) but was insignificant amid GA₃ and the control treatment (Table 7). The linear regression shows declining trend of CO_2 due to increased salinity, and so, its line came below the GA₃ pointing that GA₃ had positive role (Fig. 2). The relation of variety \times salinity \times GA₃ accounted significant differences in the CO₂ levels. MR219 produced higher CO₂: 267.1, 132.5 and 76.5µmol mol-1 s-1 at 50, 100 and 200mM, respectively. In this variety, GA₃ showed positive effect and elevated CO₂ (280.9, 277.3 and 178.6 µmol mol⁻¹ s⁻¹). At 150mM, MR219 had uncertain results as showed higher CO₂ (162.8 mol mol⁻¹ s^{-1}) but less value (148.9 mol mol⁻¹ s^{-1}) with GA₃. In Pokkali, CO_2 was higher: 229.4, 104.1 and 91.9 µmol mol⁻¹ s⁻¹ at 50, 150 and 200mM, respectively. At 50, 150 and 200 mM salinity, GA₃ showed no optimistic effect as had low CO₂ levels of 203.6, 148.9 and 76.2µmol mol⁻¹ s⁻¹, respectively.

The cv. Pokkali had higher tolerance at 100 mM having higher value of 286.4 against 229.6 μ mol mol⁻¹ (Table 8). Reduced photosynthesis under increasing salinity is attributed to stomatal closure leading to the drop in the intercellular CO₂ (Bethke and Drew, 1992). Leaf internal CO₂ affected photosynthesis, and it is now obvious that stomatal closure and leaf internal CO₂ are the two vital reasons to lessen photosynthetic rates under mild or moderate salinity (Flexas et al., 2004). The present study also proved that the intercellular CO₂ went-up in both the varieties with GA₃.

Vapour pressure difference in leaf (VPDL)

There were significant differences (P<0.05) for Vapour pressure difference in leaf and salinity declined the VPDL. The VPDL across salinity and GA₃ levels was higher in Pokkali (2.69) at the 4th week followed by 2.52 kpa in the same variety during the 2nd week. Oppositely, the lower VPDL was noted in MR219 in all weekly observations. The VPDL in both varieties showed notably lower with increasing the salinity levels (Table 6). The VPDL had higher values (2.39 Kpa) with no GA₃ but GA₃ slightly decreased it (2.29 Kpa) in Pokkali. In MR219, different results were found as higher (2.07) with GA₃ and lower (1.89Kpa) in the absence of GA₃ (Table 7). The linear regression involving salinity and GA₃ did not show any specific trend in decrease or increase in the VPDL (Fig. 2). The relation of variety \times salinity \times GA₃ was significant. The increasing salinity notably reduced the VPDL. MR219 produced 2.62, 1.82, 1.72 and 0.87Kpa under 50-200mM, respectively but GA₃ showed little disparity. Pokkali at 50-200mM had no specific trend in increase or decrease for GA₃. At 50mM, Pokkali showed higher VPDL due to GA₃. But it gave negative response due to GA₃ at 100-200 mM as had the less VPDL (Table 8). The VDPL decreased probably due to cohesive forces amid the NaCl and water. Stronger inter/intra-molecular forces in solution possibly caused the VDPL to decrease. The higher VPDL lowered the stomatal conductance due to deficit of turgor pressure. The gaseous exchange became more arrested as evaporative demand and potential transpiration rates were high. Even in well-irrigated plants, stomata tend to close at the VPDL above 1.5kPa (Machado et al., 2005). But here, GA₃ was not able to prove the VPDL recovery.

varieties x GA ₃ (ppm)		Chloro- phyll a (mg g ⁻¹)	Chloro- phyll b (mg g ⁻¹)	Total chloro- phyll (mg g ⁻¹)	Photo- synthetic rate $(\mu mol m^{-2} s^{-1})$	Stomatal conduct. (mmol m ⁻² s ⁻¹)	Transpi- ration rate (mmol m ⁻² s ⁻¹)	Inter-cellular CO ₂ (μmol mol ⁻¹)	VPDL (KPa)
MR219	0	1.27 d	3.31 b	4.58 b	3.49 c	0.05 b	1.07 c	179.8 c	1.89 d
	150	1.62 b	4.16 a	5.78 a	4.86 a	0.09 a	1.83 a	234.7 a	2.07 c
Pokkali	0	1.46 c	2.22 c	3.69 c	3.11 d	0.04 c	0.95 d	182.3 b	2.39 a
	150	1.86 a	3.97 a	5.83 a	3.89 b	0.05 b	1.10 b	182.6 b	2.29 b
SE		0.042	0.141	0.152	0.008	0.001	0.004	0.518	0.001
LSD 5%		0.118	0.395	0.426	0.023	0.003	0.010	1.442	0.003

Table 7. Physiological traits of rice varieties under the influence of GA₃

In each column, the means with similar letters do not differ significantly at the 5% level of probability.

Table 8. Physiological traits of rice varieties under the influence of salt concentrations and GA₃.

Rice varieties	Salinity levels (mM)	Chloro a (mg	phyll g ⁻¹)	Chlor l (mg	ophyll b ; g ⁻¹)	Total cł (ma	nlorophyll g g ⁻¹)	Photosy ra (µr m ⁻²	ynthetic te nol s ⁻¹)	Transp ra (mi m ⁻²	biration te mol s^{-1})	Ston condu (mi m ⁻²	natal ctance mol s ⁻¹)	Inter-c C (µr mo	ellular O ₂ nol I ⁻¹)	VI (K	PDL (Pa)
		$GA_3(1)$	ppm)	GA ₃ ((ppm)	GA ₃ (ppm)		GA ₃ (ppm)		GA ₃ ((ppm)	GA ₃ ((ppm)	GA ₃ (ppm)		GA ₃ (ppm)	
		0	150	0	150	0	150	0	150	0	150	0	150	0	150	0	150
MR219	0	1.5	2.06	5.63	6.35	7.13	8.42	7.31	8.88	2.14	3.49	0.11	0.23	260	287.7	2.42	2.07
	50	1.47	1.94	4.29	5.96	5.76	7.91	4.42	6.69	1.6	2.81	0.06	0.14	267	280.9	2.62	2.22
	100	1.26	1.49	4	4.36	5.26	5.84	3.14	4.27	0.83	1.46	0.03	0.06	132.5	277.3	1.82	2.52
	150	1.12	1.47	1.38	2.5	2.51	3.97	1.78	3.1	0.57	0.87	0.02	0.03	162.8	148.9	1.72	1.73
	200	1.01	1.16	1.25	1.64	2.26	2.79	0.79	1.34	0.22	0.49	0.01	0.02	76.5	178.6	0.87	1.81
Pokkali	0	1.82	2.19	3.55	7.01	5.37	9.19	5.89	7.09	1.93	2.26	0.09	0.09	256.6	254.6	2.42	2.37
	50	1.82	2.25	2.51	4.65	4.34	6.91	3.79	4.71	1.09	1.04	0.04	0.04	229.4	203.6	2.77	2.81
	100	1.42	1.64	2.13	3.82	3.55	5.45	2.99	3.59	1.09	1.38	0.04	0.05	229.6	286.4	2.74	2.59
	150	1.17	1.49	1.65	2.26	2.82	3.76 f	1.59	2.28	0.33	0.44	0.01	0.02	104.1	92.1	2.01	1.84
	200	1.08	1.73	1.3	2.12	2.38	3.85 f	1.27	1.78	0.29	0.39	0.01	0.01	91.9	76.2	2.03	1.86
SE		0.0	95	0.3	315	0.	341	0.0)18	0.0	008	0.003		1.158		0.003	
LSD (5%)		0.2	65	0.8	383	0.	954	0.0)51	0.0)23	0.0	007	3.2	225	0.	007

Materials and Methods

Experimental site and soil characteristics

The experiment was conducted in pots (24.5 cm diameter and 28 cm depth) at the glasshouse of the Universiti Putra Malaysia ($(3\circ00'21.34''N, 101\circ4' 15.06'' E, 37m$ elevation) during 2010-2011. The day and night temperature were 34 ± 2 and 27 ± 2^{0} C with the relative humidity of 50-75% during the experimental period. The pots were filled up with 10 kg prepared clay soil of rice field of Perak. The experimental soil was clay in texture (18.3% sand, 43.7% silt, 38% clay) and acidic in reaction (pH 6.1) with 1.02% organic carbon, EC-1.56 dSm⁻¹, soil nutrient status was 0.19% total N, 11.12 ppm available P, 122 ppm available K, 620 ppm Ca, 290 ppm, 7.63 ppm S and 0.96 ppm Zn.

Plant materials

Two rice varieties Pokkali and MR219, collected from Malaysian Agriculture Research and Development Institute (MARDI), was used as the plant material in this study, of which Pokkali used as salt tolerant check (Pokkali is the international salt tolerant rice variety) and MR219 is the well-known cultivated Malaysian variety and it was performed better under saline conditions in laboratory studies.

Experimental design and treatments

The experiment was laid out as the factorial with the treatments arranged in the randomized complete block design with four replications. Five salinity levels viz. 0, 50, 100, 150 and 200 mM and 150 ppm GA_3 as foliar spray were used in this study.

Methodology

The seeds of rice varieties were sterilized with 0.1% HgCl₂ solution (Hewitt, 1961) and dipped for 5 min in "Zap Padi Angin" solution to enhance sprouting. Those were sprouted by placing on a moist filter paper for 24 hours were sown in a well prepared wet seedbed. The soil was prior mixed well with urea, triple supper phosphate (TSP) and muriate of potash (MOP) at the rate of 120, 70, and 80kg ha⁻¹. respectively. Whole TSP and MOP, and ¹/₄th urea were added during the pot preparation and mixed thoroughly with the soil. The remaining urea was equally split at 3-leaf, active tillering, booting and heading stages. Three-week-old rice seedlings were transplanted, allocating six hills per pot giving one seedling per hill. Water was applied into the pot to maintain saturated condition at transplanting. After two weeks, the salt solutions according to the treatments were applied and renewed after every two days. The control treatment was only irrigated with water (0 mM salinity). Two weeks after the inception of the salinity treatments, plants were sprayed GA₃ at the rate of 150ppm with a hand sprayer at 5p.m. to avoid evaporation. Conductivity of soil was compared with the conductivity meter (model: ECTestr, Spectrum Technologies, Inc.).

Data measurements

The plant height of five hills was measured from the ground level to tip of the top most leaf at 30, 60 and 90 DAT. The number of tillers from five hills was counted and the average was worked out as tiller number hill⁻¹. Shoot and root

samples were oven dried at 70 °C for 3 days and total dry matter hill⁻¹ was recorded. Relative water content (RWC) was determined as described by Gonzales and Gonzales (2003). Chlorophyll content such as chlorophyll-a, chlorophyll-b and total chlorophyll were determined from the leaf samples using the method of Witham et al. (1986). Stomatal conductance, photosynthetic rate and transpiration rate were measured from flag leaf of rice by the LI-COR 6400, Nebraska, USA. Intercellular CO₂ concentration (Ci) and the vapour pressure deficit in leaves (VPDL) were noted using the LI-COR 6400, Nebraska, USA.

Statistical analysis

Data on the growth and the yield parameters were analysed using the Analysis of Variance (ANOVA) technique and the mean separation was done with the Least Significant Difference (LSD) test at 5% probability level using the computerized Statistical Analysis System Software (SAS version 9.0).

Conclusions

The present work focused that the high salinity levels notably inhibited morpho-physiological traits of both studied rice varieties. MR219 showed more affected in some parameters than control variety Pokkali under saline condition. However, less reduction was observed when GA₃applied. The study pinpointed that the spray of 150 ppm GA₃ could also be effectively utilized for rice production in saline belts due to its unique salinity alleviating role to improve the growth parameters of the cultivated rice.

Acknowledgements

The authors would like to acknowledge the Universiti Putra Malaysia and also acknowledge to Long Term Research Grant Scheme (LRGS) in Food Security–Enhance Sustainable Rice Production under the Ministry of High Education, Malaysia for Technical and financial support of this project.

References

- Afifi M, Saker M, Ahmed M, Khatab S (2010) Morphological and Physiological Studies on the effect of salinity and growth promoters on rice plants. Act Agronomice Hungarica. 58:11-2
- Aldesuquy HS, Ibrahim AH (2001) Interactive effect of seawater and growth bio-regulators on water relations, absicisic acid concentration, and yield of wheat plants. J Agron Crop Sci. 187. 185-193.
- Arteca RN (1997) Plant Growth Substances Principles and Applications CBS Publishers New Delhi, India
- Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora. 199: 361-376.
- Ashraf MY, Akhtar K, Sarwar G, Ashraf M (2002) Evaluation of arid and semi-arid ecotypes of guar (*Cyamopsis tetragonoloba L.*) for salinity (NaCl) tolerance. Arid Environ. 52:473–482.
- Basalah MO, Mohammad S (1999) Effect of salinity and plant growth regulators on seed germination of Medicago sativa L, Pakistan. J Biol Sci. 2: 651-653.
- Bernama M (2008) Agricultural Cooperation between Malaysia-Japan Crucial to Ensure Food Security. http://www.bernama.com.my/bernama/v3/news_lite.phpid= 335311

- Bethke PC, Drew MC (1922) Stomata and non-stomata components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol. 99:219-226.
- Blaylock AD (1994) Soil salinity, salt tolerance, and growth potential of horticultural and landscape plants, Cooperative Extension Service, University of Wyoming. Department of Plant, Soil, and Insect Sciences, Coll, Agric, Laramie, Wyoming.
- Brinkman (1980) Saline and sodic soils, In: Land reclamation and water management. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, the Netherlands. pp 62-68.
- Camrmona FC, Anghinoni I, Meurer EJ, Holzschuh M and Fraga TI (2009) Estabelecimentodo Rice irrigadoe absorption decations emfuncao domanejo daadubacao potassium enivel desalinidade dosolo. R Bras Ci Solo. 33:371-382.
- Castillo EG, Tuong TP, Ismail AM, Inubushi K (2007) Response to salinity in rice, comparative effects of osmotic and ionic stresses. Plant Prod Sci. 10: 159-170.
- Chakraborti N, Mukherji S (2003) Effect of phytohormone pre-treatment on nitrogen metabolism in vigan radiata under salt stress. Biol Plant. 46:63-66.
- Datta JK, Nag S, Banerjee A, Mondal NK (2009) Impact of salt stress on five varieties of wheat (*Triticum aestivum L.*) cultivars under laboratory condition. J Appl Sci Environ Manage. 13:93-97.
- Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipids signaling responses in salt-stressed rice leaves. Plant Cell Physiol. 50: 986–997.
- Drew MC, Hole PS, Picchioni GA (1990) Inhibition by NaCl of net CO2 fixation and yield of cucumber. J Amer Soc Hort Sci. 115:472-477.
- Emongor V (2007) Gibberellic acid (GA₃) influence on vegetative growth, nodulation and yield of cowpea (*Vigna unguiculata* (*L*.) walp. J Agron. 6: 509-517.
- Flexas J, Bota J, Loreto F, Cornic G, Sharkey T (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C₃ plants. Plant Biol. 6:269-279.
- Flower TJ and Yeo AR (1989) Effects of salinity on plant growth and crop yield. In: Environmental stress in Plants. Biochemical and Physiological mechanisms. (Ed.): J Cherry. Springer. Verlan, pp 101-119.
- Gain P, Mannan MA, Pal PS, Hossain MM, Parvin S (2004) Effect of salinity on some yield attributes of rice. Pak J Biol Sci. 7: 760-762.
- Goswami AB (1995) A Critical Study of Water Resources of West Bengal, Unpublished PhD thesis, Jadavpur University, pp.57-65.
- Gonzlez L, Gonzlez-Vilar M (2003) Determination of Relative Water Content. In: Handbook of Plant Ecophysiology Techniques, Roger, MR. pp207-212.
- Iqbal F (2008) Detection of suitable soils for Zero-Till wheat sowing in Gujranwala using GITS, MS Thesis National University of Sciences and Technology, Pakistan.
- Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008b) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits, Colloids Surfaces B: Biointerfaces. 61: 298-303.
- Kapulnik Y, Heuer B (1991) Forage production of four alfalfa (*Medicago sativa*) cultivars under salinity. Arid Soil Res Rehabil. 5: 127–135.
- Kariali E, Mohapatra PK (2007) Hormonal regulation of tiller dynamics in differentially tillering rice cultivars. Plant Growth Regul. 53:215-223.

- Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends plant Sci. 10:103-105.
- Kaur S, Gupta AK, kaur N (1998) Gibberellin GA_3 reverses the effect of salt stress in chickpea (*Cicer arietinum L.*) Seedling by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regul. 26:85-90.
- Khan MA, Abdullah Z (2003) Reproductive physiology of two wheat cultivars differing in salinity tolerance under dense saline-sodic soil. J Food Ag Environ. 1:185-189.
- Khan MH, Singha LB, Panda SK (2002) Changes in antioxidant levels in (*Oryza sativa L*), roots subjected to NaCl-salinity stress. Acta Physiol Plant. 24:145-148.
- Khan NA (2003) NaCl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antoxidative enzyme activities in wheat. Biol Plant. 47:437-440.
- Lin CC, Kao CH (2001) Cell wall Peroxides activity, hydrogen peroxide level and NaCl- inhibited root growth of rice seedlings. Plant Soil. 230: 135-143.
- Machado EC, Schmidt PT, Medina CL, Ribeiro RV (2005) Responses of photosynthesis of three citrus species to environmental factors. Pesq Agropec Bras. 40:1161-1170.
- Ministry of Agriculture (2007) Buku perangkaan pertanian: Unit penerbitan, Putrajaya, Malaysia.
- Misra AN, Biswal AK, Misra M (2002) Physiological, biochemical and molecular aspects of water stress responses in plants and the biotechnological applications. Proc Natl Acad Sci. 72 B: 115–134.
- Moradi M, Ismail AM (2007) Responses of Photosynthesis, chlorophyll fluorescence and ROS–Scavenging systems to salt stress, during seedling and reproductive stages of Rice. Ann Botany. 99:1161-1173.
- Motamed MK, Asadi R, Rezaei M ,Amiri E (2008) Response of high yielding rice varieties to NaCl salinity in greenhouse circumstances. Afr J Biotech. 7:3866-3873.
- Moud AM, Maghsoudi K (2008) Salt stress effects on respiration and growth of germinated seed of different wheat (*Triticum aestivum L.*) cultivars. World J Agric Sci. 4:351-358.
- Munns R, James RA (2003) Screening methods for salt tolerance: a case study with tetraploid wheat. Plant Soil. 253:201–218.
- Munns R, James RA, Luchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 57:1025–1043.
- Naqvi SS (1999) Plant hormones and stress phenomena. In: Handbook of Plant and Crop Stress. Ed. M. Pessarakli, Marcel Dakker, New York. pp709-730.
- Pattanagul W, Thitisaksakul M (2008) Effect of salinity stress on growth and carbohydrate metabolism in three rice (*Oryza sativa L.*) cultivars differing in salinity tolerance. Indian J Exp Biol. 46:736-742.
- Radi AF, Shaddad MA, Abdel-Rahman AM, Azooz MM (1989) Physiological effect of ascorbic acid and pyroxene on *Lupinus termis* and *Vicia faba* plants growth in salinized soils. Changes in carbohydrates and nitrogen metabolism. Sohag Pure Appl Sci Bull Fac Sci. 5: 161–81.
- Rao AN, Johnson DE, Siva Prasad B, Ladha JK, Mortimer AM (2007) Weed management in direct-seeded rice. Adv Agron. 93: 153-255.
- Reddy MB, Vora AB (1986) Changes in pigment composition, Hill reaction activity and saccharide metabolism in bajra (*Pennisetum typhoides*) leaves under NaCl salinity. Photosynthetic. 20:50-55.
- Santo CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hort. 103:93-99.

- Selamat A, Ismail MR (2009) Deterministic model approaches in identifying and quantifying technological challenges in rice production and research, and in predicting population, rice production and consumption in Malaysia. Pertan J of Trop Agric Sci. 32:267-291.
- Selamat A, Ismail MR (2008) Growth and production of rice for the increased Malaysian population as affected by global warming trends: forecast for 2057. Trans Malaysian Soc Plant Physiol. p17.
- Shereen A, Mumtaz S, Raza S, Khan MA, Solangi S(2005) Salinity effects on seedling growth and yield components of different inbred rice lines. Pak J Bot. 37:131-139.
- Suge H (1985) Ethylene and Gibberellin: regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol. 26: 607–614.
- Tardieu F (2005) plant tolerance to water deficit: physical limits and possibilities for progress. Geo Sci. 337:57-67.
- Tester M, Davenport R (2003) Na⁺ tolerant and transport in higher plants. Annals Bot. 91:503-527.

- Tipirdamaz R, Durusoy M, Bozcuk S (1995) Effect of exogenous polyamines on α-amylase activity during seed germination under salt stress. Turk J Bot. 19: 411–416.
- Watanabe H and Siagusa M (2004) Effects of combine application of ethephon and gibberellin on growth and nutrient uptake of rice seedling growing under direct seedling conditions. Proceeding of the 4th international crop science. Brisbane, Australia. Also available on website of http://www.cropscience.com/
- Witham FH, Blaydes DF, Devlin RM (1986) Chlorophyll absorption spectrum and quantitative determination. In: Exercises in Plant Physiology. Boston pp128-131.
- Yeo AR, Caporn SJM, Flowers TJ (1985) the effect of salinity upon photosynthesis in rice (*Oryza sativa L.*). Gas exchange by individual leaves in relation to their salt content. J Exp Bot. 36:1240-1248.
- Yin X, Kropff MJ, bNakagawa H, Horie T, Goudriaan J (1997) A model for photothermal responses of flowering in rice. II. Model evaluation. Field Crops Res. 51:201-21.