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Abstract 

 
Seed morphological traits were used to identify 67 Italian bean (Phaseolus vulgaris L.) accessions, belonging to 58 Italian landraces. 

An overall of 138 size, shape and texture descriptors were measured, on each seed, using image analysis techniques. The achieved 

data, analysed applying the stepwise Linear Discriminant Analysis, allowed to discriminate among bean landraces, also identifying 

the harvest year and the cropping areas. Comparative analyses were carried out to verify the possibility to distinguish seeds belonging 
to the same landrace but grown applying different agricultural practices. Preliminarily, it was possible to discriminate three main 

color categories of bean seeds, with an overall performance of 99.1%. Moreover, for each of these three categories, the belonging 

bean landraces were identified, with overall correct identification percentages included between 94.3% and 99.7%. Following the 

same procedure, it was possible to assess the possibility to identify the bean landraces origin, reaching overall correct identification 
percentage higher than 88%. Also considering the effect of the cropping year, the cultivation region and the agricultural practices, 

high identification performances were recorded. The results support the application of the computer vision system not only for the 

identification, classification or grading purpose, but also to define the product traceability, in order to get a “market card” for 

landrace beans. 
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Abbreviations: EFDs-Elliptic Fourier Descriptors. 

 

Introduction 

 

Common bean (Phaseolus vulgaris L.) is one of the most 

important grain legume for direct human consumption, since 
it represents a cheap source of dietary proteins. After its 

introduction from the Americas in the 16th century, it 

promptly reached a wide diffusion in Europe (Piergiovanni 

and Lioi, 2010), where farmers selected, for different 
morpho-productive traits, a large amount of landraces 

(Rodiño et al., 2009). The selective pressure, due to an 

adaptive evolutionary process, in addition to the microclimate 

of cultivation areas, as well as local constraints to production 
and different consumer preferences, resulted in a wide 

differentiation of landraces that can be observed within the 

European common bean germplasm. These landraces 

represent local specialties very appreciated for their taste, 
high nutritional value, short cooking time, thin coat and good 

yield (Piergiovanni et al., 2000). Nevertheless, some of them 

have a great economical potential, especially as quality food 

produced under low input agro-systems (Negri, 2003). They 
generally have local names, identifying the well established 

geographical area. Some of them, have recently obtained the 

European trademark as PGI (Protected Geographical 

Indication), one of the quality recognition standards 
introduced by the European Community (CEE regulations n. 

2081/92 passed by the European Council on 14/7/92). The 

punctual distribution of these local varieties and the 

following great assortment of assigned names, contributed to 
enrich the bean varietal heritage (Piergiovanni and Laghetti, 

1999). Consequently, the current whole amount of landraces 

representative of the Italian territory is just less than 150, 

sometimes reported as accessions (Logozzo et al., 2006; 
Reggi et al., 2013). Several techniques, involving the analysis 

of morphological, biochemical and molecular markers (Lioi 

et al., 2005; Sicard et al., 2005; Grisi et al., 2007; Marotti et 

al., 2007; Mercati et al., 2012; Reggi et al., 2013), can be 
used to identify the germplasm collections and assess the 

genetic relationships among accessions within a species and 

among biotypes of a same landraces (De La Fuente et al., 

2012; Diniz et al., 2014)). These methodologies may be used 
to trace and authenticate food and products, improving safety 

and quality. Nevertheless, technologies and costs of 

genotyping and phenotyping can be currently too expensive, 

labor intensive and environmentally sensitive. Over the next 
two decades, the development of phenotyping strategies will 

almost certainly mirror innovations in genotyping technology 

that have occurred over the last 20 years, characterized by 

increasing automation and throughput. As the science of 
phenotyping evolves, emphasis will increasingly be placed on 

generating information that is as accurate (able to effectively 

measure traits and/or performance characteristics), precise 

(small variance associated with replicated measurement), and 
as relevant as possible, while keeping costs within reasonable 

limits (Houle et al., 2010; Cobb et al., 2013). Therefore, at 

the current status, considering the molecular studies on 

finding specific markers to distinguish particular landraces 
and cultivars, it is possible to assert that phenotyping by 

computer vision is a least expensive method and equally 
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efficient in term of distinctiveness, with high potentialities to 

be considered, in the near future, as the main technique for 

the characterization and taxonomic identification (Dreher et 

al., 2003; Park et al., 2009; Orru et al., 2012). Many studies 
have been conducted to distinguish different agricultural 

products on the basis of shape, size and color, using image 

analysis systems (Mahajan et al., 2015). This technique was 

applied to the morphological and textural characterization of 
many commercial types of grains and seeds, such as lentils 

(Shahin and Symons, 2003; Venora et al., 2007), peas 

(Smykalova et al., 2011), vetch (Grillo et al., 2011), flax 

(Smykalova et al., 2013), grapevine (Orrù et al., 2012), in 
order to discriminate among varieties and/or commercial 

categories (Venora et al., 2009a), as well as to characterize 

and discriminate among wild seeds belonging to various 

taxonomical ranks (Bacchetta et al., 2008, 2010; Grillo et al., 
2010, 2012, 2013). Currently, chromatic and geometrical 

measurements can be successfully carried out in a precise, 

accurate and repeatable way, giving objective information 

(Granitto et al., 2003; Venora et al., 2007; Bacchetta et al., 

2008). In a previous work, Venora et al. (2009b) developed a 

macro program, based on image analysis, able to identify 15 

Italian common bean landraces on the basis of 26 quantitative 

morpho-colorimetric variables of whole seed  surface and 
their spots. The possibility to differentiate beans by their 

harvest year and/or cultivation regions was demonstrated for 

the first time, giving in some extent, a product traceability.  

According to the achievements published on recent papers 
(Grillo et al., 2010;  Pinna et al., 2014; Lo Bianco et al.,), the 

discrimination power of an identification system not only 

depends on the intra-specific representativeness of the 

analyzed samples, but also on the quality and quantity of the 
parameters measured and used to discriminate among groups, 

as well as on the dimension and variability degree of the 

groups. For this reason, it is plausible that an increase in 

measured features and in seed amount for each landrace-
class, could be useful to improve the identification 

performance reached by Venora et al. (2009b). 

The recent literature proves that features descriptive of seed 

surface texture, as well as of its geometric shape, seems to be 
strongly discriminant parameters (Diamond et al., 2004; 

Gerger and Smolle, 2004; Iwata et al., 2002, 2004; Kawabata 

et al., 2009; Nanni et al., 2010). Computing the Haralick’s 

texture indicators, able to quantitatively measure the color 
tones variation within a surface, so defining the real 

chromatic pattern; and the Elliptic Fourier Descriptors 

(EFDs), able to accurately define the shape of the bi-

dimensional profile of a seed projection; seed texture and 
shape can be carefully defined. The aims of present work are: 

(1) to implement a statistical classifier, based on seed 

morpho-colorimetric features, including Elliptic Fourier 

(EFDs) and Haralick’s descriptors, able to identify bean 
landraces; (2) to validate the statistical identification system 

with the data of 67 Italian bean accessions representative of 

the Italian territory; (3) to assess the possible differences in 

the same landrace grown in different cultivation regions or 
tilled in different agricultural systems. 

 

Results and discussion 

 

Comparisons among differet coat color beans 

 

A preliminary statistical elaboration step was given on the 
basis of seed coat main color: white, mono-colored (including 

landraces with a single seeds coat color, from cream to dark 

brown) and bi-colored or spotted seed coat (Fig. 1). Applying 

this discrimination model, percentages of correct 
identification, ranged between 98.2% (mono-colored beans) 

and 100.0% (white beans), were reached, with an overall 

performance of 99.1%, confirming the importance of the 

color features for the bean discrimination (data not shown) . 

Although these three categories are easily distinguishable 

also by visual inspection, this comparison was necessary both 
to validate the system, and to fix major categories to deeply 

investigate with further comparisons.  Afterwards, a classifier 

was developed for each of the three main color categories of 

bean seed coat, only considering the landrace name as 
grouping variable. In table 1, the classifiers cross-validated 

performances are given, for the white and mono-colored bean 

landrace groups, respectively. Relating to the 13 white 

landraces, the overall percentage of correct classification was 
96.0%, the lowest was recorded for Cannellino di Pisa [CaP] 

(85.8%) and the highest for Triverde [Tri] (100.0%). 

Whereas, the eight mono-colored coat bean landraces reached 

an overall correct classification of 99.7%, recording for 
Giallo [Gia], Moitano [Moi], Tabacchino [Tab] and Vellutina 

di Ragusa [Vel] the perfect identification rate of 100.0%. In 

both statistical elaborations, the mean seed weight 

represented the more powerful parameter of the discriminant 

functions, showing a significantly high value of F-to-remove 

(data not shown). This feature was followed, for the white 

bean classification, by several shape descriptive parameters, 

explaining the wide variability of seed sizes. Regard to 
mono-colored coat beans, after the mean seed weight, the 

most important parameters, chosen by the stepwise LDA, 

were related to color and textural information, with a 

particular focus on the Entropy, that represents the variability 
degree of the surface color, proving the power of this kind of 

features in the discrimination process (data not shown). 

Table 2 shows the percentages of correct identification 

reached for the bi-colored coat bean accessions. The overall 
performance of 94.3% was achieved. In this group, 23 out of 

37 accessions were distinguished above the 90%; for nine 

accessions, a correct classification range included between 

82.9% (Panzaredda Nera [PaN], misclassified as Badda Niura 
[BaN] in the 6.5% of cases, and as Mussuniuru [Mus] in the 

5.9%) and 89.5% (Giovanna [Gio], misclassified as San 

Michele [SaM] in the 7.9% of cases) was recorded. Only five 

bi-colored coat bean landraces (Billò [Bil], Borlotto Bianco 
[BoB], Fiumara [Fiu], Maruchedda 2 [Ma2] and Munachedda 

Nera [MuN]) were discriminated with percentage lower than 

80%. These results prove that, also for this class of beans, the 

genetic diversity is also clearly expressed in the phenotype 
and that the measured morpho-colorimetric features are 

objectively discriminant. As expected, in addition to the 

mean seed weight that shown the highest F-to-remove value, 

17 of the first 20 parameters, chosen by the identification 
system to implement the discriminant functions used to 

distinguish the bi-colored coat bean accessions, are related to 

the seed coat color and texture. The bi-colored bean landraces 

analyzed in this study are characterized by a very wide 
chromatic seed coat variability, also visually identifiable as 

reported in supplementary information (Suppl. Info. 1). 

Although landraces have to be considered as mixtures of 

genotypes, sometimes the phenotypic expression does not 
fully reflect the intrinsic genetic differences (Harlan, 1975; 

Hawkes, 1983; Payne et al., 1984; Martin and Adams, 1987; 

Rieger et al., 1991; Prospéri et al., 1994). Other times, the 
genetic variability within the same landrace is too low, in 

comparison to that between two landraces. This results in the 

possibility to identify phenotypical characters, such as seed 

color, that allow a clear discrimination also among landraces. 
 

Discrimination for geographical areas of provenance 

 

In order to evaluate the possibility to identify the bean 
landraces origin, each of the three main color categories of 

beans  (white, mono-colured and bi-colored seeds)  were split  
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Table 1. Percentage of correct identification among white (above) and mono-colored (below) coat bean landraces. Landraces cropped in different localities and/or different years, 

were considered as same landrace. In parenthesis, the number of analysed seeds. 
 White coat bean landraces  
 Bia BiP Can CaP CaG Fag PhC PiP Pur RiB RiG Ton Tri Total 

Bia 95.2 (809) - - - 1.5 (13) 2.8 (24) - - 0.4 (3) - 0.1 (1) - - 100.0 (850) 

BiP - 89.6 (95) - - - - - - - 5.7 (6) - 4.7 (5) - 100.0 (106) 

Can - - 91.4 (127) - 8.6 (12) - - - - - - - - 100.0 (139) 

CaP 1.9 (3) - 4.9 (8) 85.8 (139) 3.1 (5) - - 4.3 (7) - - - - - 100.0 (162) 

CaG 13.0 (13) - - - 87.0 (87) - - - - - - - - 100.0 (100) 

Fag 0.1 (1) - - - - 98.2 (1106) - - 1.6 (18) - - - 0.1 (1) 100.0 1126) 

PhC - - - - - - 95.2 (20) - - 4.8 (1) - - - 100.0 (21) 

PiP 1.4 (3) - - 7.2 (16) 1.8 (4) - - 88.2 (195) - - 0.9 (2) - - 100.0 (221) 

Pur - - - - 0.2 (2) 2.1 (29) - - 97.7 (1340) - - - - 100.0 (1371) 

RiB - 7.2 (12) - - - - - - - 90.2 (119) - 0.8  (1) - 100.0 (132) 

RiG - - - - - - - - - - 93.2 (109) 6.8 (8) - 100.0 (117) 

Ton - 0.3 (3) - - - - - - - 0.1 (1) 1.6 (17) 98.1 (1079) - 100.0 (1100) 

Tri - - - - - - - - - - - - 100.0 (113) 100.0 (113) 

Overall              96.0 (5558) 

 Mono-colored coat bean landraces  

 Cr1 Gia Moi SaR Tab Vel Ver Zol Total 

Cr1 97.6 (41) - - 2.4 (1) - - - - 100.0 (42) 

Gia - 100.0 (675) - - - - - - 100.0 (675) 

Moi - - 100.0 (428) - - - - - 100.0 (428) 

SaR 1.7 (3) - - 98.3 (172) - - - - 100.0 (175) 

Tab - - - - 100.0 (135) - - - 100.0 (135) 

Vel - - - - - 100.0 (294) - - 100.0 (294) 

Ver - - - - - - 99.4 (172) 0.6 (1) 100.0 (173) 

Zol - - - - - - 1.6 (1) 98.4 (60) 100.0 (61) 

Overall         99.7 (1983) 
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 Table 2. Percentage of correct identification among bi-colored coat bean landraces. Landraces cropped in different localities and/or different years, were considered as same landrace. 

In parenthesis, the number of analysed seeds. 
 BaB BaN Bil Bor BoB CaR Ciu Cr2 DeC Fiu Gio Lam Lar LaQ Lup Ma1 Ma2 Mas Muc MuN Mus Nas NaN NaR NaV PaN PaR RoL Sal SaM Sch Sci Scr Str Tuv TuR Vio Total 

BaB 
95.1 

(370) 
- - - 

4.4 

(17) 
- - - - - - - - - - - - - 

0.3 

(1) 
- - - - 

0.3 

(1) 
- - - - - - - - - - - - - 

100.0 

(389) 

BaN - 
94.4 

(304) 
- - - - - - - - - - - - - - - 

2.2 

(7) 
- 

0.6 

(2) 

0.9 

(3) 
- - - - 

1.9 

(6) 
- - - - - - - - - - - 

100.0 

(322) 

Bil - - 
76.7 

(194) 

3.2 

(8) 
- - - 

0.4 

(1) 
- - 

0.8 

(2) 

14.2 

(36) 

0.8 

(2) 

2.0 

(5) 
- - - - - 

0.8 

(2) 
- - - - - - - - - - - - - 

1.2 

(3) 
- - - 

100.0 

(253) 

Bor - - - 
92.8 

(90) 
- - - - - - 

1.0 

(1) 
- 

2.1 

(2) 
- - - 

3.1 

(3) 
- - - - - - - - - - - - 

1.0 

(1) 
- - - - - - - 

100.0 

(97) 

BoB 
0.5 

(1) 
- 

3.3 

(7) 

12.0 

(25) 

70.8 

(148) 
- 

1.0 

(2) 
- - 

4.3 

(9) 
- 

1.4 

(3) 
 - - 

1.4 

(3) 
- - - - - - - - - - - - 

1.4 

(3) 

0.5 

(1) 

1.4 

(3) 
- 

0.5 

(1) 

1.4 

(3) 
- - - 

100.0 

(209) 

CaR - - - - - 
99.1 

(110) 
- - - - - - - - - - - - - - - - - - - - - - - - - 

0.9 

(1) 
- - - - - 

100.0 

(111) 

Ciu - - - - - - 
99.4 

(171) 
- - - - - - - - - - - - - - - - - - - - - - - - - 

0.6 

(1) 
- - - - 

100.0 

(172) 

Cr2 - - - - - - - 
89.3 

(25) 
- - - - - - 

3.6 

(1) 
- - - - - - - - - - - - 

7.1 

(2) 
- - - - - - - - - 

100.0 

(28) 

DeC - - - - - - -  
98.1 

(106) 
- - - - - - 

1.9 

(2) 
- - - - - - - - - - - - - - - - - - - - - 

100.0 

(108) 

Fiu - - - - 
16.0 

(8) 
- - - - 

76.0 

(38) 
 - - - - 

4.0 

(2) 
- - - - - - - - - - - - 

2.0 

(1) 

2.0 

(1) 
- - - - - - - 

100.0 

(50) 

Gio - - - - 
2.6 

(1) 
- - - - - 

89.5 

(34) 
- - - - - - - - - - - - - - - - - - 

7.9 

(3) 
- - - - - - - 

100.0 

(38) 

Lam - - 
11.3 

(31) 
- - - - 

0.4 

(1) 
- - - 

88.0 

(242) 
- - - - - - - - - - - - - - - - - - - - - 

0.4 

(1) 
- - - 

100.0 

(275) 

Lar  - - - 
0.1 

(2) 

0.3 

(6) 

0.0 

(1) 

0.0 

(1) 
 

0.1 

(2) 

0.0 

(1) 
- - 

97.3 

(2141) 

1.0 

(22) 
- - 

0.8 

(18) 
- - - - - - - - - - - - - 

0.2 

(4) 
- - 

0.1 

(2) 
- - - 

100.0 

(2200) 

LaQ - - - - - - - - - - - 
0.1 

(1) 

0.2 

(2) 

99.7 

(947) 
- - - - - - - - - - - - - - - - - - - - - - - 

100.0 

(950) 

Lup - - - - 
0.8 

(3) 
- 

2.0 

(8) 

0.5 

(2) 
- 

0.3 

(1) 
- - - - 

90.5 

(354) 
- - - - - - - - - - - - 

0.3 

(1) 

2.3 

(9) 
- 

0.5 

(2) 
- 

1.0 

(4) 

1.5 

(6) 
- - 

0.3 

(1) 

100.0 

(391) 

Ma1 
0.5 

(1) 
- - - - - 

1.6 

(3) 
- 

3.2 

(6) 
- - - - - - 

94.6 

(176) 
- - - - - - - - - - - - - - - - - - - - - 

100.0 

(186) 

Ma2 - - - 
4.8 

(6) 

1.6 

(2) 
- - - - - - - 

23.2 

(29) 
- - - 

68.8 

(86) 
- - - - - - - - - - - - 

1.6 

(2) 
- - - - - - - 

100.0 

(125) 

Mas - 
0.5 

(1) 
- - - 

0.9 

(2) 
- - - - - - - - - - - 

90.0 

(197) 
- 

3.7 

(8) 

0.5 

(1) 
- - - - 

0.5 

(1) 
- - - - - - - - - 

4.1 

(9) 
- 

100.0 

(219) 

Muc 
1.7 

(3) 
- - - 

2.9 

(5) 
- - - - 

0.6 

(1) 
- - - - - - - - 

93.1 

(163) 
- - - - - - - - - - 

1.1 

(2) 
- - - - - - - 

100.0 

(175) 

MuN - 
4.7 

(4) 
- - - - - - - - - - - - - - - 

12.9 

(11) 
- 

78.8 

(67) 
- - - - - 

3.5 

(3) 
- - - - - - - - - - - 

100.0 

(85) 

Mus - - - - - - - - - - - - - 
0.2 

(1) 
- - - - - - 

83.6 

(351) 

2.1 

(9) 

4.0 

(17) 

1.2 

(5) 

3.6 

(15) 
- - - - - 

0.5 

(2) 

0.7 

(3) 
- - 

4.0 

(17) 
- - 

100.0 

(420) 

Nas - - - - - - - - - - - - - - - - - - - - 
4.1 

(2) 

87.8 

(43) 
- 

8.2 

(4) 
- - - - - - - - - - - - - 

100.0 

(49) 

NaN - - - - - - - - - - - - - - - - - - - - - - 
100.0 

(75) 
- - - - - - - - - - - - - - 

100.0 

(75) 

NaR - - - - - - - - - - - - - - - - - - - - - 
7.1 

(6) 
- 

87.1 

(74) 

5.9 

(5) 
- - - - - - - - - - - - 

100.0 

(85) 

NaV - - - - - - - - - - - - - - - - - - - - - 
1.5 

(3) 
- 

3.4 

(7) 

94.1 

(193) 
- - - - - - - - - - 

1.0 

(2) 
- 

100.0 

(205) 

PaN - 
6.5 

(11) 
- - - - - - - - - - - - - - - 

2.9 

(5) 
- 

0.6 

(1) 

5.9 

(10) 
- - - 

1.2 

(2) 

82.9 

(141) 
- - - - - - - - - - - 

100.0 

(170) 

PaR - - - - - - - - - - - - - - - - - - - - - - - - - - 
96.2 

(101) 
- - - 

1.0 

(1) 
- - - 

1.0 

(1) 

1.9 

(2) 
- 

100.0 

(105) 

RoL - - - - - - - - - - - - - - - 
2.3 

(2) 
- - - - - - - - - - - 

98.7 

(75) 

1.3 

(1) 
- - - - - - - - 

100.0 

(76) 

Sal - - - - 
1.1 

(1) 
- 

1.1 

(1) 
- - - - - - - - - - - - - - - - - - - - - 

90.8 

(79) 
- - - 

4.6 

(4) 
- - - - 

100.0 

(87) 

SaM - - - 
1.0 

(1) 

1.0 

(1) 
- - - - 

2.0 

(2) 

7.0 

(7) 
- - - - - - - - - - - - - - - - - - 

89.0 

(89) 
- - - - - - - 

100.0 

(100) 

Sch - - - - 
0.3 

(7) 
- 

0.4 

(9) 

0.0 

(1) 

0.0 

(1) 

0.0 

(1) 
- - - - - - - - - - - - - - - - - - - - 

99.2 

(2256) 
- - - - - - 

100.0 

(2275) 

Sci - - - - - 
0.2 

(1) 
- - - - - - - - 

0.6 

(3) 
- - - - - - - - - - - - - - - 

0.2 

(1) 

98.8 

(491) 

0.2 

(1) 
- - - - 

100.0 

(497) 

Scr - - - - - - 
3.1 

(3) 
- - - - - - - - - - - - - - - - - - - - 

2.1 

(2) 

7.3 

(7) 
- 

2.1 

(2) 
 

85.4 

(82) 
- - - - 

100.0 

(96) 

Str - - 
0.4 

(1) 

0.8 

(2) 

2.0 

(5) 
- 

0.4 

(1) 
- - 

0.8 

(2) 
- - 

1.2 

(3) 
- - - - - - - - - - - - - - - - - - - - 

94.3 

(232) 
- - - 

100.0 

(246) 

Tuv 
0.5 

(1) 
- - - - - - - - - - - - - - - - 

0.5 

(1) 

1.0 

(2) 
 

3.3 

(7) 
- - 

3.8 

(8) 
- 

0.5 

(1) 
- - - - - - - - 

90.4 

(189) 
- - 

100.0 

(209) 

TuR - - - - - - - - - - - - - - - - - - - - - - - - 
1.3 

(2) 
- 

1.9 

(3) 
- - - - - - - - 

96.9 

(155) 
- 

100.0 

(160) 

Vio - - - - - - - - - - - - - - 
0.9 

(1) 
 - 

0.9 

(1) 
- - - - - - - - - - - - - - - - - - 

98.2 

(110) 

100.0 

(112) 

Overall                
 

                     
94.3 

(11350) 
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Fig 1. 3D graphical representation of the discriminant analysis for bean landraces distinguished for seed coat main color. 
 

 

 
Fig 2. 3D graphical representations of the geographical areas discrimination for the three main color categories: white (A), mono-

colored (B) and bi-colored (C) beans coat. No landraces from Sicily were available for white bean coat class, and no landraces from 
N-Italy were available for bi-colored bean coat class. 

 

in four groups, according to the cropping geographical areas: 

Northern (N), Central (C), Southern Italy (S) and Sicily, 
considering this aspect interesting and useful for traceability 

purpose. It should be highlighted that only the bi-colored coat 

bean landraces were present into the four geographical areas, 
whereas the white coat bean landraces were not collected in 

Sicily and the mono-colored ones were not sampled in N-

Italy. Figure 2 reports the graphical representation of the 

geographical areas discrimination for the three main color 
categories of bean coat. Overall performances of 92.8%, 

98.8% and 88.2% were recorded for white, mono-colored and 

bi-colored coat beans accessions, respectively (data not 

shown). Further comparisons were implemented among bean 
landraces collected in the same geographical area, 

distinguishing for seed coat color. Regarding the white coat 

beans, the percentages of correct classification were 99.2% 

and 99.0% for C-Italy and S-Italy accessions, respectively 
(data not shown; Fig. 3), recording the minimum value 

(95.7%) both for Cannellino di Pisa [CaP] (C-Italy) and for 

Riso Giallo [RiG] (S-Italy). Discrimination among white coat 

landraces was not possible for N-Italy, because only Bianco 
di Pigna [BiP] belonged to this geographical group. Both S-

Italy and Sicily mono-colored coat bean landraces were 

perfectly distinguished (data not shown; Fig. 4). Thelandrace 

Zolfino [Zol] was the only one accession cropped in C-Italy. 
Classification performance for bi-colored coat beans is shown 

in table 3. The overall classification of 95.0% was achieved 

for the N-Italy group, in which the best result was obtained 

for Saluggia [Sal] and Stregone del Piemonte [Str], whose 
percentages of correct classification reached 100.0%; while 

for Billò [Bil] and Lamon [Lam], performances of 93.7% and 

90.2% were respectively achieved.  

 
The overall classification for C-Italy beans was 97.8%. The 

landraces Della Chiesa [DeC], Mascherino [Mas] and Rosso 

di Lucca [RoL] were perfectly identified, while the remaining 
landraces reached percentages of correct identification ranged 

between 91.4% (Borlotto Bianco [BoB]) and 99.0% (Borlotto 

[Bor] and Scritto di Lucca [Scr]) (Table. 3). The S-Italy 

group of beans was the largest, with 18 different accessions. 
They were well identified in 97.8% of cases, recording values 

higher than 88%, except for Maruchedda [Ma2] that reached 

84.8% of correct classification, showing the highest 

misattribution with Lardariello [Lar] (12.8%) (Table. 3). 
Finally, classification results about the Sicilian bean 

landraces are given. The overall correct classification was 

99.5%. Badda Bianca [BaB], Fiumara [Fiu], Scicli [Sci] and 

Viola [Vio] were perfectly identified, while for the other 
landraces, values included between 89.3% (Crucchittu 2 

[Cr2]) and 99.4% (Badda Niura [BaN]) were recorded (Table 

3).  

The obtained results seem to prove the possibility to identify 
the bean landraces origin on the basis of morpho-colorimetric 

features of seeds. These achievements are probably due to the 

phenotypic expression that not exclusively results from the 

genotype but also from effect of the growing land where they 
originated and evolved; as well as climatic conditions and 

particular agronomical practices, historically applied in some 

regions and not in others. Landraces of beans, such as of any 

other crop, consist of seed material phenotypically very 
susceptible and responsive to biotic and abiotic environmental 
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Table 3.  Percentage of correct identification among bi-colored coat bean landraces distinguished for geographical area. In parenthesis, the number of analysed seeds. 

   
             

N - Italy Bil Lam Sal Str           Total 

Bil 93.7 (237) 5.9 (15) - 0.4 (1)           100.0 (253) 

Lam 9.8 (27) 90.2 (248) - -           100.0 (275) 

Sal - - 100.0 (87) -           100.0 (87) 

Str - - - 100.0 (246)           100.0 (246) 

Overall 
    

              95.0 (861) 

     
                

C - Italy Bor BoB DeC Lup Mas RoL Scr      Total 

Bor 99.0 (96) 1.0 (1) - - - - -     100.0 (97) 

BoB 6.7 (14) 91.4 (191) 0.5 (1) 1.4 (3) - - -     100.0 (209) 

DeC - - 100.0 (108) - - - -     100.0 (108) 

Lup - 0.5 (2) - 98.5 (385) - - 1.0 (4)     100.0 (391) 

Mas - - - - 100.0 (219) - -     100.0 (219) 

RoL - - - - - 100.0 (76) -     100.0 (76) 

Scr - - - - - 1.0 (1) 99.0 (95)     100.0 (96) 

Overall 
  

              97.8 (1196) 

     
                

S - Italy CaR Ciu Lar LaQ Ma1 Ma2 Muc MuN Nas NaN NaR NaV PaN PaR SaM Sch Tuv TuR Total 

CaR 
99.1 

(110) 
- - - - - - - - - - - - - - - 

0.9 

(1) 
- 100.0 (111) 

Ciu - 
99.4 

(171) 
- - 

0.6 

(1) 
- - - - - - - - - - - - - 100.0 (172) 

Lar - 
0.0 

(1) 

98.3 

(2162) 

0.7 

(15) 
- 0.9 (20) - - - - - - - - - 

0.1 

(2) 
- - 100.0 (2200) 

LaQ - - 
0.2 

(2) 

99.8 

(948) 
- - - - - - - - - - - - - - 100.0 (950) 

Ma1 - 
2.7 

(5) 
- - 

97.3 

(181) 

84.8 

(106) 
- - - - - - - - - - - - 100.0 (186) 

Ma2 - - 
12.8 

(16) 
- - - - - - - - - - - 

2.4 

(3) 
- - - 100.0 (125) 

Muc - 
0.6 

(1) 
- - 

1.1 

(2) 
- 

96.0 

(168) 
- - - - - - - 

1.7 

(3) 
- 

0.6 

(1) 
- 100.0 (175) 

MuN 
1.2 

(1) 
- - - - - - 

89.4 

(76) 
- - - - 

8.2 

(7) 
- - - - 

1.2 

(1) 
100.0 (85) 

Nas 
2.0 

(1) 
- - - - - - - 

89.8 

(44) 
- 

8.2 

(4) 
- - - - - - - 100.0 (49) 

NaN - - - - - - - - - 
100.0 

(75) 
- - - - - - - - 100.0 (75) 

NaR - - - - - - - - 
8.2 

(7) 
- 

88.2 

(75) 

3.5 

(3) 
- - - - - - 100.0 (85) 

NaV - - - - - - - - 
2.0 

(4) 
- 

2.0 

(4) 

95.6 

(196) 
- - - - - 

0.5 

(1) 
100.0 (205) 

PaN - - - - - - - 
1.2 

(2) 
- - 

0.6 

(1) 

4.1 

(7) 

94.1 

(160) 
- - - - - 100.0 (170) 

PaR - - - - - - - - - - - - - 
92.4 

(97) 
- 

1.0 

(1) 

1.0 

(1) 

5.7 

(6) 
100.0 (105) 

SaM - - - - - - - - - - - - - - 
99.0 

(99) 
- - - 100.0 (100) 

Sch - 0.4 - - - - - - - - - - - - - 99.6 - 0.0 100.0 (2275) 
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(8) (2266) (1) 

Tuv - - - - - 1.4 (3) 
1.4 

(3) 
- - 

1.0 

(2) 

4.3 

(9) 
- 

1.0 

(2) 
- - - 

92.3 

(193) 
- 100.0 (209) 

TuR - - - - - 0.6 (1) 
0.6 

(1) 
- - - - 

2.5 

(4) 
- 

1.9 

(3) 
- - 

1.3 

(2) 

93.8 

(150) 
100.0 (160) 

Overall 
    

              97.8 (7437) 

     
                

Sicily BaB BaN Cr2 Fiu Gio Mus Sci Vio   Total 

BaB 100.0 (389) - - - - - - -   100.0 (389) 

BaN - 99.4 (320) - - - 0.6 (2) - -   100.0 (322) 

Cr2 - - 89.3 (25) 3.6 (1) 3.6 (1) - - 3.6 (1)   100.0 (28) 

Fiu - - - 100.0 (50) - - - -   100.0 (50) 

Gio - - - 5.3 (2) 94.7 (36) - - -   100.0 (38) 

Mus 0.5 (2) - - - - 99.3 (417) 0.2 (1) -   100.0 (420) 

Sci - - - - - - 100.0 (497) -   100.0 (497) 

Vio - - - - - - - 100.0 (112)   100.0 (112) 

Overall 
    

              99.5 (1856) 
 

               
 

 

Fig 3. 3D graphical representation of the discriminant analysis among white coat beans landraces collected in C-Italy (A) and S-Italy (B). 
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Fig 4. 3D graphical representation of the discriminant analysis among mono-colored coat beans landraces collected in S-Italy (A) and 

Sicily (B). 

 

factors (Karaköy et al., 2014; Scarano et al., 2014). 

Moreover, it is known that the phenotype of an organism is 

dynamic and conditional, representing a complex set of 

responses to a multi-dimensional pattern of endogenous and 
exogenous signals that are integrated over the evolutionary 

and developmental life history of an individual. Phenotypic 

information can be envisioned as a continuous stream of data 

that changes over the course of development of species, 
populations or individuals in response to different 

environmental conditions (Cobb et al., 2013). For this reason, 

the work moved to verify the possibility to differentiate some 

accessions according to their harvest years, cultivation 
regions and applied agronomic techniques. 

 

Interaction Phenotype × Environment 

 

The effect of the cropping year 

 

According to the collected data, comparisons between two 

cultivation years, 2004/2005 and 2007/2008, were developed 
for Borlotto Bianco [BoB] and Moitano [Moi] respectively, 

and a further one, among three cultivation years, 

2004/2005/2006, for Lupinaro [Lup] (Table 4). As shown, the 

statistical classifiers implemented for Borlotto Bianco [BoB] 
and Moitano [Moi] landraces, allowed perfect identifications; 

while an overall percentage of correct classification of 89.8%  

 

was recorded for Lupinaro [Lup], investigated for three 

consecutive years. 

These results confirm the hypothesis that the cropping year 

and the relative climatic conditions affect the phenotypic 
expression of the seeds, although specific identifying 

characters are preserved. 

 

The effect of the cultivation region 
 

Table 5 reports the classification performance among the two 

cultivation regions for the landraces Fiumara [Fiu], 

Mascherino [Mas], Mussuniuru [Mus] and Purgatorio [Pur]. 
Perfect identification performances were reached for Fiumara 

[Fiu], Mascherino [Mas] and Mussuniuru [Mus]. Also the 

comparison between Purgatorio seeds from Umbria and 

Lazio allowed to achieve a very high performance (99.9%), 
misclassifying only one seed over the 1371. As reported in 

supplementary information (Suppl. Info. 1), Mascherino 

[Mas] and Purgatorio [Pur] landraces were collected in 

different provinces of Central Italy, then it is plausible to 
suppose that the geographical distance between the localities 

could explain the clear found differentiation. On the other 

hand, Fiumara [Fiu] and Mussuniuru [Mus] were cropped in 

the same territory, in close areas with comparable pedo-
climatic conditions. In this case, being the seed weight the 

most powerful feature, the perfect discrimination between the  

 

Table 4. Percentage of correct identification among different harvest years, for the landraces Borlotto 

Bianco [BoB], Moitano [Moi] and Lupinaro [Lup]. In parenthesis, the number of analysed seeds. 

     

 BoB 2004 BoB 2005  Total 

BoB 2004  100.0 (32) -  100.0 (32) 

BoB 2005  - 100.0 (177)  100.0 (177) 
Overall    100.0 (209) 

     

 Moi 2007 Moi 2008  Total 

Moi 2007 100.0 (365) -  100.0 (365) 
Moi 2008 - 100.0 (63)  100.0 (63) 

Overall    100.0 (428) 

     

 Lup 2004 Lup 2005 Lup 2006 Total 

Lup 2004 96.0 (24) - 4.0 (1) 100.0 (25) 

Lup 2005 - 86.3 (151) 13.7 (24) 100.0 (175) 

Lup 2006 0.5 (1) 7.3 (14) 92.2 (176) 100.0 (191) 

Overall    89.8 (391) 
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Table 5. Percentage of correct identification between bean landraces harvested in different localities. In 

parenthesis, the number of analysed seeds. 

Fiu 
S. Pietro Patti (ME) 

Sicily 

Raccuia (ME) 

Sicily 
Total 

S. Pietro Patti (ME) - Sicily 100.0 (24) - 100.0 (24) 

Raccuia (ME) - Sicily - 100.0 (26) 100.0 (26) 
Overall   100.0 (50) 

    

Mas 
Pisa 

Tuscany 

Garfagnana 

(LU) 

Tuscany 

Total 

Pisa (PI) - Tuscany 100.0 (110) - 100.0 (110) 

Garfagnana (LU) - Tuscany - 100.0 (109) 100.0 (109) 

Overall   100.0 (219) 

    

Mus 
S. Pietro Patti (ME) 

Sicily 
Raccuia (ME)) 

Sicily 
Total 

S. Pietro Patti (ME) -  Sicily 100.0 (68) - 100.0 (68) 
Raccuia Sinagna (ME) -  Sicily - 100.0 (352) 100.0 (352) 

Overall   100.0 (420) 

    

Pur 

Colfiorito di Foligno 

(PG) 

Umbria 

Gradoli (VT) 

Lazio 
Total 

Colfiorito di Foligno (PG) - Umbria 99.8 (545) 0.2 (1) 100.0 (546) 

Gradoli (VT) - Lazio - 100.0 (825) 100.0 (825) 
Overall   99.9 (1371) 

 
 

 
 

 

 

Fig 5. Geographical distribution of the sampling sites. 
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seed lots cropped in the two different areas could be due to 

different agronomical treatments applied to the two crops. 

Comparing the above data with those obtained by Venora et 
al. (2009b), no significant difference can be detected in the 

classifier performance used to discriminate bean accessions 

according to the cropping year. Differently, matching up to 

the results achieved from the comparison between the 
landrace Purgatorio grown in Umbria and the same landrace 

cropped in Lazio, it is possible to note the effect of the added 

parameters for the seeds discriminant analysis. The image 

analysis macro used by Venora et al. (2009b) allowed to 
correctly identify 68.1% of the landrace Purgatorio from 

Umbria, misclassifying as Purgatorio from Lazio 31.9% of 

the cases. The increasing of the analyzed seeds number, 

together with the improvements made to the macro, adding 
the mean seed weight, the 78 EFDs and 22 Haralick's 

descriptors, released as result 99.9% of correct classification, 

proving an higher ability of classifier.  

 

The effect of the agricultural practices 

 

A further comparison was carried out to verify the effect of 

different agricultural practices in the seed phenotyping, 
assessing the possibility to discriminate between seed lots of 

a same landrace, grown in the same locality applying 

different agricultural practices. The landrace 

Schiucchiuraliedd [Sch] was cropped in the same locality 
through row seeding in organic fertilization or by pocket 

drilling without fertilization and irrigation (Table 6). In this 

case, an overall correct identification percentage of 100.0% 

of correct recognition was achieved. One more time, even 
though some phenotypic peculiarities of the seed remain 

unchanged, the reached results prove the great implications 

that, both environment and agronomic treatments, have on 

the seed morpho-colorimetric characters. As mixture of 
genotypes, landraces are distinct but variable populations, 

characterized by a specific adaptation to the environmental 

conditions of the cultivation area (tolerant to the biotic and 

abiotic stresses of that area). They are closely associated with 
the uses, knowledge, habits, dialects, and celebrations of the 

people who developed and continue to grow it, also applying 

different agricultural practices (Negri et al., 2009; Polegri and 

Negri, 2010). 
 

Materials and Methods 

 

Seed samples collection and acquisition 

 

Bean samples of 58 Italian landraces were investigated and 

characterized in this study. Four of these landraces (Fiumara, 
Mascherino, Mussuniuru and Purgatorio) were collected from 

two cultivation regions, in order to evaluate the effect of the 

geographical position, while the landraces Borlotto Bianco, 

Moitano and Lupinaro were monitored and collected for two 
or three consecutive harvest years (2004/2005; 2007/2008; 

2004/2005/2006), in order to investigate environmental or  

 
 

Fig 6.  Representative bean samples of some of the landraces 

considered in the study. 

 
seasonal differences. In addition, the landrace 

Schiucchiuraliedd was analyzed as it was cultivated applying 

different agricultural techniques, in the same geographical 

locality: row seeding in organic fertilization and pocket 
drilling without fertilization and irrigation management. A 

total of 67 accessions were investigated. The studied bean 

samples and their main seed characteristics are given as 

supplementary information (Supplemetary Table 1). Figure 5 
reports the geographical position of the sampling sites and in 

figure 6, some of the studied bean landraces are shown. 

Digital images of beans were acquired, using a flatbed 

scanner (ScanMaker 9800 XL, Microtek Denver, CO), 
following the procedure reported in Pinna et al. (2014) and 

Table 6. Percentage of correct identification for the landrace Schiucchiuraliedd [Sch] cropped in the same locality applying different 
agronomical practices (through row seeding in organic fertilization or by pocket drilling without fertilization and irrigation; below). 

In parenthesis, the number of analysed seeds. 

 
Row seeding 

in organic fertilization 

Pocket drilling 

without fertilization 

and irrigation 

Total 

Row seeding in organic fertilization 

 
100.0 (1375) - 100.0 (1375) 

Pocket drilling without fertilization and irrigation  

 
-  100.0 (900) 100.0 (900) 

Overall   100.0 (1275) 
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processed using the software package KS-400 V. 3.0 (Carl 

Zeiss, Vision, Oberkochen, Germany). A total of 18,893 bean 

seeds were analyzed. 

 

Elliptic Fourier (EFDs) and Haralick’s descriptors  

 

In order to increase the discrimination power, the macro 

specifically developed by Venora et al., (2009b) for the 
characterization of bean seeds,was further enhanced adding 

algorithms that allow to compute the Elliptic Fourier 

Descriptors (EFDs) for each analyzed seed, obtaining further 

78 quantitative variables. As described by Orrù et al. (2012), 
this method allows to define the boundary of the seed 

projection, as an array of complex numbers which correspond 

to the pixels position of the seed boundary. According many 

authors about the use of number of harmonics for an optimal 
description of seed outlines, 20 harmonics were used to 

define the seed boundaries (Orrù et al., 2013). Moreover, the 

macro was improved including algorithms able to calculate 

11 Haralick’s descriptors with the relative standard deviation 

values for each seed. These parameters are generally used 

when the objects in the images cannot be separated due to 

indefinite grey values variations. In these cases, the 

evaluation of texture, tone and context allows to define the 
spatial distribution of the image intensities and discrete tonal 

features. When a small area of the image has little variation 

of discrete tonal features, the dominant property of that area 

is grey tone. When a small area has wide variation of discrete 
tonal features, the dominant property of that area is texture 

(Haralick and Shapiro, 1991). According Haralick et al. 

(1973), the concept of tone is based on varying shades of 

grey of resolution cells in a photographic image, while 
texture is concerned with the spatial (statistical) distribution 

of grey tones. Texture and tone are not independent concepts; 

rather, they bear an inextricable relationship to one another 

very much like the relationship between a particle and a 
wave. Context, texture and tone are always present in the 

image, although at times one property can dominate the 

others. The basis for these features is the gray-level co-

occurrence matrix (G in equation 1). This matrix is square 
with dimension Ng, where Ng is the number of gray levels in 

the image. Element [i,j] of the matrix is generated by 

counting the number of times a pixel (p) with value i is 

adjacent to a pixel with value j and then dividing the entire 
matrix by the total number of such comparisons made. Each 

entry is therefore considered to be the probability that a pixel 

with value i will be found adjacent to a pixel of value j. 





















)gN,gN(,p)2,gN(p)1,gN(p

)gN,2(p)2,2(p)1,2(p

)gN,1(p)2,1(p)1,1(p

G


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



         (eq. 1) 

 
The 11 Haralick’s descriptors measured on each seed to 

mathematically describe the surface texture and all the other 

morpho-colorimetric characters are available as 

supplementary information (Supplementary Table 2 and 3). 
Mean seed weight of each seed lot was also included to 

increase the discriminant power of the statistical analysis. It 

was determined weighing 20 seeds for ten times, on a four 

decimal places scale. 

 

 

 

Statistical analysis  

 

The achieved data were used to build a global database, 

including morpho-colorimetric, EFDs and Haralick’s 

descriptors and mean seed weight. Statistical elaborations 

were executed using SPSS software package release 15 

(SPSS, 2007), applying the same stepwise Linear 

Discriminant Analysis (LDA) algorithm suggested by Grillo 
et al. (2012) to identify and discriminate among the 

investigated bean accessions. This approach is commonly 

used to classify/identify unknown groups characterized by 

quantitative and qualitative variables (Sugiyama, 2007), 
finding the combination of predictor variables with the aim of 

minimizing the within-class distance and maximizing the 

between-class distance simultaneously, thus achieving 

maximum class discrimination (Hastie et al., 2009; Venora et 
al., 2009b; Holden et al., 2011; Rencher and Christensen, 

2012; Kuhn and Johnson, 2013). The stepwise method 

identifies and selects the most statistically significant features 

among them to use for the seed sample identification, using 
three statistical variables: Tolerance, F-to-enter and F-to-

remove. The Tolerance value indicates the proportion of a 

variable variance not accounted for by other independent 

variables in the equation. F-to-enter and F-to-remove values 

define the power of each variable in the model and they are 

useful to describe what happens if a variable is inserted and 

removed, respectively, from the current model. This selective 

process starts with a model that does not include any of the 
original morpho-colorimetric features. At each step, the 

feature with the largest F-to-enter value that exceeds the 

entry criteria chosen (F ≥ 3.84) is added to the model. The 

original features left out of the analysis at the last step have 
F-to-enter values smaller than 3.84, so no more are added. 

The process is automatically stopped when no remaining 

morpho-colorimetric features increased the discrimination 

ability (Venora et al., 2007; Grillo et al., 2012). 
A cross-validation procedure was applied to verify the 

performance of the identification system, testing individual 

unknown cases and classifying them on the basis of all 

others. This procedure, also called rotation estimation (Picard 
and Cook, 1984; Kohavi, 1995), was applied, both to evaluate 

the performance and to validate any classifier. The validation 

procedure here used is the Leave-One-Out Cross-Validation 

(LOOCV). It involves using a single case from the original 
sample set as the validation dataset, and the remaining cases 

as the training set. Each case is classified into a group 

according to the classification functions computed from all 

the data except the case being classified. The proportion of 
misclassified cases after removing the effect of each case one 

at a time is the leave-one-out estimate of misclassification 

(SPSS, 2007). To graphically highlight the differences among 

seed groups, multidimensional plots were drawn using the 
first three discriminant functions or, alternatively, when the 

number of discriminant groups n did not allow to obtain at 

least three discriminant functions (n−1), the two available 

discriminant functions and the Mahalanobis’ distance 
(Mahalanobis, 1936) were used (Bacchetta et al., 2008). 

 

Conclusions 

 
The achievements allow demonstrating the usefulness of the 

discrimination system based on seed phenotypic characters, 

for the identification and classification of bean accessions. 
The technique here proposed, conveniently sustained by a 

conspicuous database, can be undoubtedly considered a 

helpful tool as a support for any other recognized 

identification systems such as DNA fingerprinting and bar-
coding. The obtained results support the application of the 

image analysis system not only for grading purposes, but also 

to define the product traceability, in order to get a “market 

card” for bean landraces. Food traceability is becoming 
increasingly relevant, especially in terms of international 

trade. For the export and import of food, the development of 
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traceability systems has been identified as a priority, mainly 

in connection with food safety. Therefore, the 

implementation of food traceability mechanisms is 

particularly relevant for developing countries who wish to 
increase extending their share in international food trade. 

Considering the heterogeneous nature of the seed samples 

used in this study, in order to validate these preliminary 

achievements, further trials will have to be conducted 
focusing on few selected landraces, cropped in many 

different localities, for many consecutive years and applying 

different defined agronomical practices. 
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