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Abstract 

 

High-throughput hyperspectral passive reflectance sensing can acquire timely information to make more informed management 

decisions in real time compared with the more laborious destructive measurements. Early prediction of yield and yield components of 

peanut by spectral reflectance measurements prior to harvest could reduce the phenotyping time and expenses compared to 

destructive measurements. In this study, the performance of hyperspectral passive reflectance sensing was tested at three growth 

stages, the beginning of pod development and at 50% and 80% pod development, to assess their relationship to the pod yield, seed 

protein content, seed oil content, and straw yield of peanut cultivars Two peanut cultivars, Giza 5 and Giza 6, were grown under field 

conditions and subjected to three levels of nitrogen application. Simple linear regression and partial least squares regression (PLSR) 

models were compared to analyse the spectral data. The closest relationships were obtained for the spectral index (R610 - R424)/(R610 + 

R424) with the pod yield (R2 = 0.70, significant at p ≤ 0.001), as well as the straw yield (R2 = 0.53, significant at p ≤ 0.001) and the 

protein content (R2 = 0.69, significant at p ≤ 0.001. For the relationships between PLSR with the pod yield, protein content and oil 

content and the straw yield of peanut cultivars, the coefficients of determination reached values up to R2 = 0.82 (significant at p ≤ 

0.001) through the individual measurements. Both, the PLSR and normalized difference spectral index analysis of spectral data 

performed better for assessing the pod yield and protein content than the oil content and straw yield of peanut cultivars. In 

conclusion, phenotyping yield and quality related parameters of peanut by PLSR analysis of non-invasive reflectance measurements 

represent a promising strategy for management action as well as for screening peanut cultivars.  

 

Keywords: Phenomics; phenotyping; proximal sensing; spectral reflectance; protein content. 

Abbreviations: BBCH 71, 85 and 89_ BBCH growth stages indicating beginning of pod development and 50 and 80% of pod 

development, respectively; fed_feddan: 1 feddan  = 0.42 hectares = 1.038 acres. GNDVI_the green normalized difference vegetation 

index; NDVI_the normalized difference vegetation index; PLSR_partial least square regression; NWI-3_the normalised water index 

3; HPS_hyperspectral passive sensor.  

 

Introduction  

 

Peanut or groundnut (Arachis hypogaea L.) is one of the most 

important leguminous crops which are an important source of 

protein and oil. The high-energy value, protein content, and 

minerals make peanut a rich source of nutrition at a 

comparatively low price. Peanut seeds contain high amounts 

of edible oil (43 - 50%), protein (25-30%), carbohydrate 

(20%) and fiber (5%) and ash which make a substantial 

contribution to human nutrition (Fageria et al., 1997; 

Aboukheira, 2009). Nitrogen is an essential component of 

many compounds of plants, such as chlorophyll, proteins, 

nucleotides, alkaloids, enzymes, hormones (Tiwari and 

Dhakar 1997). Nitrogen is the most important constituent of 

plant proteins and is required throughout crop growth from 

the vegetative stage to the subsequent harvesting. Application 

of nitrogen is known to mainly increase the protein content 

and protein fractions. Many researchers have found that late 

season top dressed nitrogen addition as dry fertilizer material 

was most effective in attaining higher grain protein 

concentration, yield and increased fertilizer recovery and 

efficiency (Weiser and Seilmeier, 1998; Michael et al., 2000; 

Pendashteh et al., 2011). Barik et al. (1998) found that 

increasing the level of nitrogen fertilizer increased pod and 

seed yield and 100 seed and pod weight. Plant phenotyping is 

currently one of the key limiting factors of the agricultural 

research and will play a vital role in ensuring yield stability 

and continuous increase (Furbank and Tester 2011). Recent 

progress in DNA marker assays and sequencing technologies 

enable high throughput genotyping of many individual plants 

at relatively low cost (Peleman and van der Voort, 2003). In 

contrast, phenotyping of a large number of genotypes and 

mapping populations in field trials is still laborious and 

expensive. Spectral approaches have been proposed to be 

efficient, high-throughput and cost-effective and to allow 

phenotyping several traits in field trials (Winterhalter et al., 

2012; Walter et al., 2012), and could bring about tremendous 

progress in plant genetic screening even to unravel the 

genetic basis of dynamic traits. High-throughput precision 

phenotyping, using spectral reflectance measurements, has 

further the potential to provide more information for making 

better-informed management decisions at the canopy scale in 

real time (Mistele and Schmidhalter, 2010; Elsayed et al., 

2011; Rischbeck et al., 2014). Similar to that, for detecting 

https://en.wikipedia.org/wiki/Hectare
https://en.wikipedia.org/wiki/Acres
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grain yield, protein and oil content of plants in the field, 

numerous observations are required to characterize a field. 

Proximal remote sensing systems for phenotyping on the 

field scale can be based on passive reflectance sensing. 

Passive sensor systems depend on sunlight as a source of 

light which allows hyperspectral information to be obtained 

in the visible and near-infrared range (Erdle et al., 2011; 

Elsayed et al., 2015). Passive reflectance sensors have widely 

been used to measure several canopy variables such as plant 

water status, biomass, leaf area index, nitrogen status or grain 

yield in cereals (Mistele and Schmidhalter, 2008; Erdle et al., 

2011; Winterhalter et al., 2013). In this study, the use of 

passive reflectance sensing for identifying promising peanut 

cultivars was assessed to test whether pod yield, straw, seed 

protein and oil content can be predicted before harvest. Early 

prediction of grain yield by spectral reflectance 

measurements prior to harvest could reduce phenotyping time 

and expenses compared to destructive measurements (Marti 

et al., 2007; Prasad et al., 2007). To the best of our 

knowledge, there is very little information available about the 

assessment of seed protein and oil content, straw and pod 

yield of peanut by using hyperspectral reflectance 

measurements under field conditions.  The use of high 

throughput remote or proximal sensing for assessing seed 

yield and grain protein content is less studied and rarely 

reported in the literature. Basnet et al. (2003) found that 

Landsat TM data was related with barley and wheat, with 

maximum coefficients of determination of 0.64 and 0.70, 

respectively. The reflectance of Landsat TM short-wave 

infrared (band 5) derived from canopy spectra or image data 

was related with protein content of grain R2 = 0.31 and 0.37, 

respectively (Zhao et al., 2005). Hansen et al. (2002) reported 

that no relationship was obtained between the reflectance 

measurements and protein content of barley or wheat. Some 

studies were done for assessment of grain yield in cereals. 

For example, the normalized difference vegetation index 

(NDVI) at the milk-grain stage was well correlated to the 

final wheat grain yield at two levels of nitrogen fertiliser 

application under rainfed and irrigated conditions. However, 

it was also observed that the NDVI (R774 – R656)/(R774 + R656) 

was also reasonably correlated to the grain yield at the onset 

of stem elongation (Marti et al., 2007). Gutierrez et al. (2006) 

found that the relationship between the green normalized 

difference vegetation index (GNDVI) (R780 – R550/R780 + 

R550) and seed yield of bean was higher (R2 = 0.77) than the 

relationship between NDVI (R900 – R680/R900 + R680). Erdle et 

al. (2013) found that the spectral index (R760/R730) was 

related to the grain yield of wheat cultivars under different 

levels of nitrogen fertilizer. Lobos et al. (2014) found that the 

normalised water index 3 ((NWI-3; (R970 – R920)/(R970 + 

R920)) and the normalised difference vegetation index NDVI 

(R830 – R660)/(R830 + R660) were most closely related to the 

grain yield of wheat genotypes. Robson et al. (2004) found 

that, the hyperspectral analysis of growing peanut leaves 

delivered significant correlations (up to r= 0.73**: p = 0.006) 

in predicting the pod maturity with canopy reflectance using 

the normalized difference vegetation index (NDVI) derived 

from high resolution multispectral satellite imagery. For 

reflectance measurements of growing leaves with field 

spectroscopy, the explanation of variance was greater than 

90% using PLSR analysis with the wavelengths 640, 640, 

747, 964 and 1124 nm. An alternative approach is to use 

partial least square regression (PLSR) of hyperspectral 

reflectance. Partial Least Square Regression (PLSR) creates 

orthogonal latent variables across the input variables (single 

wavebands) and relates them to the target variables (Elsayed 

et al., 2015). Partial Least Square Regression (PLSR) analysis 

is a chemometric technique that generalizes and combines the 

methods of Principal Component Analysis (PCA) and 

multiple regressions; it is used to predict a set of dependent 

variables from a large set of independent ones (i.e., 

predictors) that may be correlated. In PLSR orthogonal 

components, unaffected by collinearity, are derived from all 

variables. Partial least square models of hyperspectral 

reflectance were used by Weber et al. (2011). Elsayed et al. 

(2015) reported that partial least square regression could 

improve the assessment of the grain yield and the normalized 

relative canopy temperature of barley cultivars. PLSR 

analysis enabled the prediction of the N status in wheat and 

corn from ground-based spectral data (Alchanatis et al., 2005; 

Bonfil et al., 2005) and in forests from hyperspectral images 

(Smith et al. 2002; Coops et al., 2003). The purpose of this 

work was to evaluate the performance of passive sensing to: 

i.e. (i) assess whether spectral indices obtained at three 

BBCH growth stages (Lancashire et al., 1991), the beginning 

of pod development and 50% and 80% of pod development 

(BBCH growth stages 71, 85 and 89)  can reflect changes in 

the pod and straw yield, seed protein and oil content of 

peanut cultivars under three levels of nitrogen fertilizer 

application (ii) and to compare the performance of spectral 

reflectance indices and  partial least square regression to 

assess the pod and straw yield, and seed protein and oil 

contents of two peanut cultivars. 

 

Results 

 

Variation in the pod and straw yield, protein and oil content 

of peanut cultivars under three levels of nitrogen fertilizer 

 

The cultivar Giza 5  presented the highest pod yield, straw, 

and seed protein content  of 1.272 ton/fed, 1.95 ton/fed and 

28.90 (%), respectively under  T3 (N 40 kg/fed). While the 

cultivar Giza 6 presented the highest oil content of 43.79 (%) 

under T2 (N 20 kg/fed). The values of the mean pod yield, 

straw yield and seed protein content of peanut cultivars 

varied positively with the increasing nitrogen level, whereas 

the values of the mean oil content varied negatively with the 

increasing nitrogen level (Table 2). Significant differences (P 

≤ 0.05) were found for the pod yield, straw yield and seed 

protein and oil content of peanut cultivars among the 

treatments of nitrogen fertilizer application.  

 

Contour map analysis of the hyperspectral passive data 

 

A contour map analysis produced the mean coefficients of 

determination (R2) of the three measurement dates for all dual 

wavelength combinations as a normalized difference spectral 

index. Contours of the matrices of the hyperspectral passive 

sensor presented generally more distinct relationships with 

the pod and straw yield, as well as the seed protein and oil 

content of peanut cultivars in the visible area than the 

combination of visible and near infrared wavelengths at the 

three measurements dates. The contour map analysis of the 

relationship between the normalized difference spectral 

indices with the pod yield, seed protein content and straw 

generally showed higher coefficients of determination than a 

contour map analysis of the oil content (Fig.1 and 2).  

 

The relationship between spectral reflectance indices with 

the pod and straw yield, protein and oil content of peanut 

cultivars under three levels of nitrogen fertilizer application 

 

Across the three measuring dates, spectral indices were more 

closely correlated with the pod yield, seed protein content  
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Table 1. Formula, index abbreviation and references of different previously developed and new spectral indices used in this study. 

Formula Index abbreviation References 

(R780 – R550)/(R780 + R550) HPS1 780_550 Gutiérrez et al., 2010 

(R780 – R510)/(R780 + R510) HPS 780_510 Mistele et al., 2012 

(R760– R730)/(R760 + R730) HPS 760_730 Barnes et al., 2000 

(R698 – R420)/(R698 + R420) HPS 698_420 this work 

(R620– R470)/(R620 + R470) HPS 620_470 this work 

(R610– R470)/(R610 + R470) HPS 610_470 this work 

(R610– R450)/(R610+ R450) HPS 610_450 this work 

(R610– R430)/(R610 + R430) HPS 610_430 this work 

(R610– R424)/(R610 + R424) HPS 610_424 this work 

(R502– R458)/( R502+ R458) HPS 505_458 this work 

(R500– R460)/(R500 + R460) HPS 500_460 this work 
            1HPS indicates hyperspectral passive sensor. 

 

 

        

                 

             

        
Fig 1. Correlation matrices (contour maps) showing the coefficients of determination (R2) for all dual wavelength combinations in 

the range of 302–1148 nm (as a normalised difference index) of the hyperspectral passive reflectance sensor with the pod yield of 

two peanut cultivars: (a) at BBCH 71, (b) at BBCH 85, (c) at BBCH 88 and (d) mean coefficients of determination (R2) of the 

spectral indices with the seed yield for three measurement dates and with the straw yield: (e) at BBCH 71, (f) at BBCH 85, (g) at 

BBCH 88 and (h) mean coefficients of determination (R2) of the spectral indices with the straw yield for the three measurement 

dates. 
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Table 2. Average seed and straw yield, protein content and oil content of two Peanut cultivars at three levels of nitrogen fertilizer 

application in 2013. Values with the same letter are not significantly different (P ≥ 0.05) among treatments according to Duncan’s 

test. SD indicates standard deviation. 

Cultivars 

 

 

Treatments Pod yield SD Straw 

 

 

SD 

 

 

Seed 

protein  

content 

SD 

 

 

Seed oil 

content 

SD 

  

ton/fed 

 

ton/ fed 

 

ton/fed 

 

ton/ fed 

 

(%) (%) 

 

(%) (%) 

 

 

N 10 kg/fed. 

 

1.044 c 

 

0.07 

 

1.75 cd 

 

0.08 

 
22.08 d 0.64 42.61 b 0.82 

Giza 5 

N 20 kg/fed 

 

1.192 ab 

 

0.15 

 

1.81b c 

 

0.08 

 
27.19 b 1.5 40.81 c  0.91 

 

N 40 kg/fed 

 

1.272 a 

 

0.02 

 

1.95 a 

 

0.06 

 
28.90 a 0.71 40.97 c 0.77 

 

N 10 kg/fed. 

 

0.800 e 

 

0.07 

 

1.58 e 

 

0.07 

 
21.10 d 0.45 42.30 b 0.94 

Giza 6 

N 20 kg/fed 

 

0.947 d 

 

0.08 

 

1.7 d 

 

0.10 

 
25.50 c 1.74 43.79 a 0.78 

 

N 40 kg/fed 

 

1.112 bc 

 

0.08 

 

1.87 b 

 

0.09 

 
26.51bc 1.18 38.86 d 1.41 

 

 

Fig 2. Correlation matrices (contour 

maps) showing the coefficients of 

determination (R2) for all dual 

wavelength combinations in the range of 

302–1148 nm (as a normalised 

difference index) of the hyperspectral 

passive reflectance sensor with the seed 

protein content of two peanut cultivars: 

(a) at BBCH 71, (b) at BBCH 85, (c) at 

BBCH 88 and (d) mean coefficients of 

determination (R2) of the spectral indices 

with the seed protein content for three 

measurement dates and with the seed oil 

content: (e) at BBCH 71, (f) at BBCH 

85, (g) at BBCH 88 and (h) mean 

coefficients of determination (R2) of the 

spectral indices with the seed oil content 

for three measurement dates. 

 

                                        

               

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



980 
 

and straw yield than the seed oil content of the two peanut 

cultivars. The obtained coefficients of determination (R2) are 

shown in Tables 3 and 4. Linear relationships were chosen to 

assess the relationship between the normalized difference 

spectral indices with the pod and straw yield, the seed protein 

and oil content. The closest significant relationships for the 

hyperspectral passive sensor were found for the pod yield 

with R2 values ranging from 0.16*** to 0.70***, straw yield 

with R2 values ranging from 0.10** to 0.53*** as shown in 

Table 3, as well as the seed protein content with R2 values 

ranging from 0.28*** to 0.69***, and the seed oil content 

with R2 values ranging from 0.05* to 0.43*** as indicated in 

Table 4.  The normalized spectral index of HPS 610_424 

showed the highest coefficients of determination (0.70***, 

0.69*** and 0.53***) with pod yield, seed protein content 

and straw yield, respectively, at the growth stage BBCH 85 

as shown in Tables 3 and 4. For the normalized difference 

spectral index HPS 500_470 a coefficient of determination of 

0.43*** was obtained for the oil content at the growth stage 

BBCH 71 (Table 3).  

 

Partial least squares regression analysis to predict pod and 

straw yield, protein and oil content of peanut cultivars 

 

In Table 5 the quality of the PLSR models is presented 

through adjusted coefficients of determination of calibration 

(R2 cal) and validation (R2 val), root mean square errors 

(RMSE cal and val) and the slope of the linear regressions for 

calibration and validation models at the three measurement 

dates. Across all calibration data sets, the closest 

relationships for pod yield (R2 = 0.80***), for straw yield (R2 

= 0.71***) were recorded for seed protein content (R2 = 

0.82***) at growth stage BBCH 71 and for seed oil content 

(R2 = 0.68***) at growth stage BBCH 88. Across all 

validation data set formations, the highest coefficients of 

determination, with R2 = 0.7*** for pod yield at growth stage 

BBCH 71, with R2 = 0.45*** for straw yield at growth stage 

BBCH 88, and R2 = 0.69*** for seed protein content at 

growth stage BBCH 71 and with R2 = 0.49*** for oil content 

were recorded. Across all calibration and validation data set 

formations, the RMSEC varied from 0.08 to 0.12 ton per 

feddan for pod yield, from 0.08 to 0.11 ton per feddan for 

straw yield, from 1.25 % to 1.95 % for seed protein content 

and from 1.02 % to 1.52 % for seed oil content. The highest 

slope values for calibration and validation data sets (0.82 and 

0.72) were recorded at growth stage BBCH 71. 

 

Discussion 

 

A hyperspectral passive reflectance sensor was used in this 

study to assess the pod yield, straw yield, seed protein and oil 

content of two peanut cultivars under three levels of nitrogen  

fertilizer application. The difference in the doses of nitrogen 

fertilizer which were added to the soil affected the pod and 

straw yield, seed protein and oil content of two peanut 

cultivars (Table 2). Weiser and Seilmeier (1998) reported that 

the protein content was strongly influenced by nitrogen. The 

content of protein increased significantly with increasing 

dose of nitrogen application. El-Habbasha et al. (2013) found 

that there were positive relationships between increased 

nitrogen levels from 30 and 40 N kg/feddan and pod yield, 

seed protein content and straw yield. In contrast there was a 

negative relationship between increased nitrogen fertilizer 

application and seed oil content. These results agree with our 

results obtained for two peanut cultivars (Table 2), where the 

increased nitrogen fertilizer dose and the pod yield, seed 

protein content and straw yield increased whereas the seed oil 

content decreased. Between the peanut cultivars, significant 

differences in mean pod yield, straw, seed protein and oil 

content were found at three levels of nitrogen fertilizer 

application (Table 3). These results agree with the findings of 

Gohari et al. (2010) and Moraditochaee (2012), who reported 

that there were variations in the pod yield and straw yield of 

peanut cultivars under different levels of nitrogen fertilizer 

application. In this study, high-throughput passive sensing 

was found to present a major advantage. Spectral 

measurements could be performed simultaneously and in a 

short time by using a tractor as mobile carrier platform. Fast 

measurements can reduce disturbances caused by shifting 

illumination. The passive optical sensor system was mounted 

on a frame in front of a tractor-based measuring platform. 

The sensor was driven to measure the spectral reflectance of 

all plots. In several other studies (Ferrio et al., 2005; Inman et 

al., 2007; Prasad et al., 2007; Gutierrez et al., 2010) handheld 

sensors were used for spectral measurements of plants. This 

method is more time consuming and may, therefore, be more 

affected by external factors, such as ambient climatic 

conditions. To further minimize disturbing effects by external 

factors, bi-directional measurements of the incident and 

reflected radiation were used to calculate optimised 

vegetation indices by creating matrix contour maps for the 

three measurements dates (Figs 1 and 2) and the more stable 

and strong spectral  indices were chosen (Table 1). 

Averages of the correlation matrices resulting from the 

three measurements dates as indicated by the coefficients of 

determination (R2) for all dual wavelengths combinations in 

the range of 400–750 nm (as a normalised difference index 

for pod and straw yield, protein and oil content of two peanut 

cultivars (Fig. 1 d and h and Fig. 2 d and h) presented higher 

R2-values compared to the other combinations of two 

wavelengths. Maybe this is due to the range from 400 to 750 

nm is more affected by the chlorophyll a and b as well as by 

the leaf area index. In this study to create a variation in the 

straw yield, as well as the protein and oil content, the peanut 

cultivars were exposed to three doses of nitrogen fertilizer. 

These results agree with Gates et al. (1965) and Townsend et 

al. (2003), who reported that the range from 400 to 530 nm 

rapidly changes from relatively low reflectance in the blue 

region to higher reflectance in the green region and in the 

range from 680‐730 nm straddling the red edge. The spectra 

in the 450–530 nm range are strongly influenced by the 

presence and abundance of chlorophyll a and b. In contrast, 

the spectra in the 680‐730 nm range may be correlated with 

the leaf area index. Our assessment of reflectance indices as a 

method to predict the pod and straw yield, and the seed 

protein content of peanut cultivars demonstrated that the 

selected four indices such as HPS 610_424, HPS 610_430, 

HPS 698_420, HPS 620_470 which were derived from the 

visible region as well as HPS 760_730 and HPS 780_550, 

which were derived from the near infrared range or 

combinations between visible and near infrared regions are 

apparently useful for describing these parameters (Tables 3 

and 4). The use of the full spectral range from 302 - 1148 nm 

for the PLSR analysis increased the accuracy of the estimates 

of the pod and straw yield, seed protein and oil content 

compared with the use of the normalised difference spectral 

indices (Tables 3, 4 and 5). The calibration model of the 

PLSR was strongly related to the pod and straw yield, as well 

as the seed protein and oil content compared with the 

normalised difference spectral indices (Tables 3, 4 and 5). 

Comparably, in peanut cultivars, the assessment of the pod 

yield, straw and seed protein and oil content was stronger and 

more robust when using PLSR models than with the 

previously assayed normalised difference spectral indices.  
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Table 3. Coefficients of determination of linear regressions of pod and straw yield with spectral indices of the hyperspectral passive 

sensor (HPS) (calculated as normalised difference indices) for peanut cultivars subjected to three levels of nitrogen. 

Spectral indices Parameters 3 August 2013 24 August2013 2 September 2013 

  

BBCH 71 BBCH 85 BBCH 88 

HPS 780_550 Pod yield 0.40*** 0.35*** 0.47*** 

 Straw 0.45*** 0.26*** 0.20** 

HPS 760_730 Pod yield 0.37*** 0.43*** 0.56*** 

 Straw 0.45*** 0.27*** 0.24*** 

HPS 760_510 Pod yield 0.25*** 0.16* 0.23** 

 Straw 0.38*** 0.10* 0.03 

HPS 698_420 Pod yield 0.46*** 0.67*** 0.57*** 

 Straw 0.42*** 0.45*** 0.45*** 

HPS 620_470 Pod yield 0.53*** 0.61*** 0.59*** 

 Straw 0.49*** 0.38*** 0.41*** 

HPS 610_450 Pod yield 0.52*** 0.62*** 0.60*** 

 Straw 0.46*** 0.42*** 0.42*** 

HPS 610_430 Pod yield 0.53*** 0.68*** 0.59*** 

 Straw 0.48*** 0.49*** 0.42*** 

HPS 610_424 Pod yield 0.51*** 0.70*** 0.60*** 

 Straw 0.49*** 0.53*** 0.42*** 

HPS 502_458 Pod yield 0.56*** 0.68*** 0.58*** 

 Straw 0.51*** 0.48*** 0.44*** 

HPS 500_470 Pod yield 0.56*** 0.62*** 0.58*** 

 Straw 0.38*** 0.10* 0.45*** 

HPS 500_460 Pod yield 0.55*** 0.67*** 0.57*** 

 Straw 0.52*** 0.47*** 0.44*** 

 *, **, *** Statistically significant at P ≤ 0.05; P ≤ 0.01 and P ≤ 0.001, respectively. 
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Fig 3. Relationships between the observed and predicted pod yield: (a) at BBCH 71, (b) at BBCH 85, (c) at BBCH 88, as well as for 

the straw yield (d) at BBCH 71, (e) at BBCH 85 and (f) at BBCH 88 at individual dates for the calibration and validation datasets 

using a partial least squares model. 
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Table 4. Coefficients of determination of linear regressions of seed protein and oil content with spectral indices of the hyperspectral 

passive sensor (HPS) (calculated as normalised difference indices) for peanut cultivars subjected to three levels of nitrogen. 

Spectral indices Parameters 3 August 2013 24 August2013 2 September 2013 

  

BBCH 71 BBCH 85 BBCH 88 

HPS 780_550 Protein content 0.53*** 0.37*** 0.47*** 

 Oil content 0.33*** 0.13* 0.10* 

HPS 760_730 Protein content 0.53*** 0.43*** 0.54*** 

 Oil content 0.33*** 0.13* 0.16* 

HPS 760_510 Protein content 0.32*** 0.17* 0.28*** 

 Oil content 0.17*** 0.05 0.03 

HPS 698_420 Protein content 0.54*** 0.61*** 0.58*** 

 Oil content 0.33*** 0.18** 0.23*** 

HPS 620_470 Protein content 0.66*** 0.59*** 0.59*** 

 Oil content 0.39*** 0.20*** 0.22*** 

HPS 610_450 Protein content 0.64*** 0.59*** 0.57*** 

 Oil content 0.41*** 0.21** 0.22** 

HPS 610_430 Protein content 0.54*** 0.69*** 0.57*** 

 Oil content 0.41*** 0.24*** 0.23*** 

HPS 610_424 Protein content 0.62*** 0.69*** 0.57*** 

 Oil content 0.40*** 0.25*** 0.23** 

HPS 502_458 Protein content 0.56*** 0.65*** 0.57*** 

 Oil content 0.43*** 0.24*** 0.24*** 

HPS 500_470 Protein content 0.67*** 0.57*** 0.57** 

 Oil content 0.43*** 0.21** 0.24*** 

HPS 500_460 Protein content 0.66*** 0.65*** 0.53*** 

 Oil content 0.42*** 0.24*** 0.25*** 

        *, **, *** Statistically significant at P ≤ 0.05; P ≤ 0.01 and P ≤ 0.001, respectively. 
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Fig 4. Relationships between the observed and predicted seed protein content: (a) at BBCH 71, (b) at BBCH 85, (c) at BBCH 88, as 

well as for the seed oil content (d) at BBCH 71, (e) at BBCH 85 and (f) at BBCH 88 at individual dates for the calibration and 

validation datasets using a partial least squares model. 
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Table 5. Calibration (R² cal, RMSEC and slope cal), and 7-fold cross-validation (R² val, RMSEV and slope val) of the statistics of 

partial least square regression models of the spectral reflectance from 302 to 1148 nm with the pod and straw yield, protein content 

and oil content of peanut cultivars. 

Growth 

stages 

 

 

Statistical 

parameters 

 

 

1PCs Pod 

yield 

(ton/fed) 

 

PCs Straw 

yield 

(ton/fed) 

 

PCs Seed protein 

content 

(%) 

 

PCs Seed oil 

content 

(%) 

BBCH 71 

 Cal R2 

5 

0.80*** 

5 

0.71*** 

6  

0.82*** 

4  

0.59*** 

  Val R2  0.65***  0.43***  0.69***  0.49*** 

  RMSEC  0.08  0.08  1.25  1.17 

  RMSEV  0.11  0.11  1.67  1.31 

  Slope cal  0.80  0.71  0.82  0.59 

 Slope val  0.70  0.54  0.72  0.54 

BBCH 85 

 Cal R2 

5 

0.73*** 

4 

0.60*** 

3  

0.71*** 

6  

0.68*** 

  Val R2  0.60***  0.31***  0.60***  0.29*** 

  RMSEC  0.09  0.09  1.54  1.02 

  RMSEV  0.11  0.11  1.85  1.52 

  Slope cal  0.73  0.60  0.71  0.68 

 Slope val  0.63  0.45  0.69  0.58 

BBCH 88 

 Cal R2 

4 

0.75*** 

4 

0.67*** 

3  

0.69*** 

3  

0.50*** 

  Val R2  0.57***  0.45***  0.59***  0.34*** 

  RMSEC  0.09  0.08  1.68  1.29 

  RMSEV  0.12  0.11  1.94  1.48 

  Slope cal  0.75  0.67  0.69  0.50 

 Slope val  0.61  0.53  0.60  0.42 

*** Statistically significant at P ≤ 0.001, respectively 1PCs, Number of latent variables. Cal, Calibration, Val, Validation,RMSEC, Root mean square error for calibration, 

RMSEV, Root mean square error for validation 

 

This is shown by the improvement of the coefficients of 

determination in Tables 3 and 4 and the results of the cross 

validation in Table 5. These results agree with Sharabian et 

al. (2014), who found that strong relationships existed 

between the predicted and observed values for a validation 

dataset of grain yield (R2 = 0.87, RMSE = 301) and protein 

content (R2 = 0.80, RMSE = 6.8) and SPAD values (R2 = 

0.84, RMSE = 1.94). Li et al. (2014), who found that the 

PLSR is a potentially useful approach to derive the canopy 

nitrogen concentration of winter wheat across growth stages, 

compared with spectral indices, and the average value of the 

coefficient of determination for the PLSR model increased to 

76.8% and 75.5% in the calibration and validation datasets, 

respectively. The advantage of PLSR models compared with 

spectral index models is that the PLSR in this study used 

information from every spectral band from 302 to 1148 nm 

and selected the number of factors to best represent the 

calibration data without overfitting. PLSR had no limitation 

in predicting the pod yield, straw and seed protein and oil 

content and the relationship between the observed and 

predicted values was linear. The calibration model of the 

PLSR and spectral indices (Tables 3, 4, 5) presented higher 

coefficients of determination with the pod yield and the seed 

protein content than with the straw yield and the seed oil 

content.  

 

Materials and Methods 

 

Field experiments and design 

 

Field experiments were conducted at the research station of 

the Sadat City University in Egypt. The research station of 

the Sadat City University is characterized by a semi-arid 

climate with moderate cold winters and warm summers. The 

experiment was a two factorial set up with two peanut 

cultivars, Giza 5 and Giza 6, three fertilizer rates with T1 (N 

10 kg/feddan), T2 (N 20 kg/feddan) and T3 (N 40 kg/feddan) 

and nine replicates for each treatment. The fertilizer was 

added in two equal doses, immediately at sowing and 21 days 

later as ammonium nitrate (NH4NO3 33.5%). All treatments 

received the recommended dose from superphosphate (15.5% 

P2O2) at a rate of 200 kg/feddan and potassium sulfate (48% 

K2O) at a rate of 50 kg/feddan. Drip irrigation was used. The 

peanut cultivars were sown on 15 May 2013 in sandy loam 

soil that contains (72.8 % sand, 19. 4 % silt and 7.9 % clay). 

The soil was characterized by an electrical conductivity of 

1.82 dS m-1, 0.36% organic matter and 5% calcium 

carbonate. The plots consisted of 3 rows spaced 60 cm apart 

and had a length of 4 m. Herbicide and fungicide treatments 

were applied in all trials when necessary. At harvest time, a 

random sample of 10 plants was taken from each plot to 

determine the averages of the pod and straw yield. After pod 

drying, the pod yield (ton/fed) was determined. In addition, 

samples of seeds obtained from 100-pods collected randomly 

from each plot were used to determine: (1) total nitrogen by 

using the micro-Kjeldahl method, as described by A.O.A.C. 

(1980), the protein content in seeds was calculated by 

multiplying the total nitrogen percentage by a factor of 6.25. 

The seed oil percentage was determined by the NMR method 

as described by Granhund and Zimmerman (1975). 

 

Spectral reflectance measurements  

 

For spectral reflectance measurements, a passive bi-

directional reflectance sensor (tec5, Oberursel, Germany) 

measuring at wavelengths between 302 - 1148 nm with a 

bandwidth of 2 nm and connected to a portable computer and 

geographical positioning system (GPS) was used. The 

passive reflectance sensor consists of two units; one unit was 

linked with a diffuser and measured the light radiation as a 

reference signal. The second unit simultaneously measured 

the canopy reflectance with a fiber optic (Mistele and 
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Schmidhalter, 2008; Elsayed et al., 2011).The aperture of the 

optics was 12° and the field of view was 0.2 m2 from one 

meter height. Collecting information in the field, the sensor 

outputs were co-recorded along with the GPS coordinates. 

For each position, the actual sensor output was co-referenced 

and recorded. Afterwards, readings within one plot were 

averaged to single values per plot. With the readings from the 

spectrometer unit the canopy reflectance was calculated and 

corrected with a calibration factor obtained from a reference 

grey standard. Spectral measurements were were taken 

mostly on sunny days at the nadir direction about 0.75 m 

above the canopy. The sensor was mounted on a frame in 

front of a tractor and was driven to measure the spectral 

reflectance of all plots at three measurement dates on 3 

August 2013 at BBCH 71, 24 August 2013 at BBCH 85 and 

2 September 2013 at BBCH 88.  

 

Statistical analysis 

 

Selection of spectral reflectance indices and single 

reflectance bands 

 

In Table 1 eleven spectral indices from different sources are 

listed with reference. We calculated and tested both known 

and novel indices. A contour map analysis for all 

wavelengths of the hyperspectral passive sensor (from 302 

to1048 nm) was used to select some normalized difference 

indices, which generally presented more stable and strong 

relationships with pod yield, straw and seed protein and oil 

content of peanut cultivars under three levels of nitrogen 

fertilizer (Figs.1 & 2). All possible dual wavelengths 

combinations were evaluated depending on a contour map 

analysis of the reflectance measurements. Contour maps are 

matrices of the coefficients of determination of pod and straw 

yield, seed protein and oil content of peanut cultivars with all 

possible combinations of binary, normalized spectral indices 

(Fig. 1 and 2). The R package “lattice” from the software R 

statistics version 3.0.2 (R foundation for statistical computing 

2013) was used to produce the contour maps from the 

hyperspectral reflectance readings, seventeen wavelengths 

(780, 760, 730, 698, 620, 610, 550, 510, 502, 500, 470, 460, 

458, 450, 430, 424, and 420nm) were subsequently selected 

for the evaluation of optimized reflectance indices.  

 

Modelling of the pod and straw yield, seed protein and oil 

content of peanut cultivars 

 

Sigmaplot for Windows v.12 (Systat software Inc., Chicago), 

and SPSS 16 (SPSS Inc., Chicago, IL, USA were used for the 

statistical analysis. Simple linear regressions were calculated 

to analyse the relationship between spectral indices listed in 

Table 1 with the pod and straw yield, seed protein and oil 

content  (Tables 3 and 4). Coefficients of determination and 

significance levels were determined; nominal alpha values of 

0.05, 0.01 and 0.001 were used (Tables 3 and 4). The 

Unscrambler X multivariate data analysis software version 

10.2 (CAMO Software AS, Oslo) was used to calibrate and 

validate partial least square models. Single wavebands 

derived from the same spectra usually contain redundant 

information (Sharabian et al., 2014). Partial Least Square 

Regression (PLSR) creates orthogonal latent variables across 

the input variables (single wavebands) and relates them to the 

target variables (seed and straw yield, seed protein and oil 

content). This is a way to cope with redundancy in the input 

variables. The PLSR searches the sensitive information from 

spectral reflectance for all wavelengths. For the hyperspectral 

passive sensor, all wavelengths from 302 to 1148 were used 

as input variables in the PLSR models shown in Table 5. For 

the model the datasets from the three measurements dates at 3 

August 2014, 24 August 2013 and 2 September 2013 were 

used. For determining the model quality one approach of 

validation were used. In Table 5 a (7 fold) cross validation 

approach was applied for the PLSR models. Calibration and 

validation quality of models is presented through adjusted 

coefficients of determination of calibration (R2cal) and 

validation (R2val), root mean square errors for calibration 

(RMSEC) and for validation (RMSEV) and the slope of the 

linear regressions between observed and predicted values of 

the pod yield, straw and seed protein and oil content. Scatter 

plots of seed yield, straw and seed protein and oil content 

predicted from calibration and validation models with 

observed data for three measurement dates are shown in 

Figures 3& 4. 

 

Conclusions 

 

The results show that the models developed from the 

normalised difference spectral indices analysis and PLSR 

analysis reliably assessed the pod and straw yield, as well as 

the seed protein and oil content of two peanut cultivars. 

Partial least square regression models of reflectance 

measurements potentially improve non-invasive 

measurements of pod and straw yields, as well as seed protein 

and oil contents of peanut cultivars compared with 

normalised difference spectral indices analysis.  
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