Genetic diversity assessment of cotton (Gossypium hirsutum L.) genotypes from Pakistan using simple sequence repeat markers

Abdelhafiz Adam Dahab1,2, Muhammad Saeed2, Bahaeldeen Babiker Mohamed1,3, Muhammad Aleem Ashraf1, Agung Nugroho Puspioto1, Kamran Shehzad Bajwa1, Ahmad Ali Shahid1, Tayyab Husnain1

1Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
2Department of Botany, Government College University, Faisalabad, Pakistan.
3National Centre for Research (NCR), Khartoum, Sudan

*Corresponding Author: dahabadelhafiz@yahoo.com

Abstract

Knowledge of genetic diversity is important for successful genetic improvement programs. Thus, the genetic diversity in 50 representative Pakistani cotton cultivars was studied using 70 simple sequence repeat (SSR) primer pairs. The 70 selected SSR primer pairs generated a total of 241 SSR alleles, of which 147 (60 %) were found to be polymorphic, resulting in 57.5 % polymorphism, and the average number of polymorphic alleles per primer was observed to be 2.10. The pairwise genetic distances between individuals were calculated by the percentage disagreement method, and the resulting matrix showed a mean genetic similarity of 0.315 among the 50 genotypes, revealing a very high level of genetic relatedness. Regarding the pairwise combinations, the genetic similarities between genotypes varied from 0.1 between CIM-446 and CIM-448 to 0.53 between CIM-482 and MNH-6070 and also STAPM-82 and AYT-85094. A UPGMA cluster analysis revealed inconsistencies in the clustering patterns, but did not precisely reflect the origins of the populations, as each cluster consists of cultivars released from different breeding origins. The results suggest that SSR markers are efficient for measuring genetic diversity and relatedness and in identifying varieties of cotton. These results suggest a need for further evaluation of the level of molecular genetic diversity through the application of additional markers for upland cotton genome to improve resolution, as well as effective use of these tools in breeding programs. Such efforts will address the current concerns on the narrowness of the genetic base of widely grown Upland cotton cultivars.

Keywords: Cotton markers; SSRs; Genetic diversity; Microsatellite.

Abbreviations: AFLP, amplified fragment length polymorphism; RAPD, random amplified polymorphic DNA; RFLP, restriction fragment length polymorphism; SSR, simple sequence repeat; UPGMA, Unweighted Pair-group Average Percent Disagreement; CTAB, cetyltrimethylammonium bromide.

Introduction

Cotton (Gossypium spp.) is the most extensively used natural fiber in textile manufacturing and is one of the most abundantly grown oilseed crops, with a yearly average range from $27 – 29 billion worldwide from lint fiber production (Campbell et al., 2010). Cotton is also an important food source for humans and livestock (Sunilkumar et al., 2006). At the global level, cotton production has been relatively stable for the last many years, and, although it is native to the tropics and subtropics, including America, Africa and Asia, it is currently being cultivated in nearly 100 countries. China, USA, India and Pakistan are the top four cotton-growing nations, accounting for approximately 2/3 of the world’s cotton acreage (http://www.ers.usda.gov/Briefing/Cotton/trade.htm). The level of genetic diversity of a crop species is an essential element of sustainable crop production, and the success of any genetic conservation and breeding program depends largely on the identification of the genetic diversity in the gene pool. Thus, information on the genetic diversity and relationships among plant varieties is important to recognize the complexity of the gene pool, to identify gaps in genotype collections and to develop effective preservation and management strategies. In this way, molecular evaluations can provide insight into the genetic structure among varieties of different breeding origins; with this information, breeders can select the appropriate plant material to use in screening and breeding programs, with a goal of introducing new varieties (Russell et al., 1997). Because of advances in molecular marker technology over the past years, there have been extensive efforts to explore the molecular genetic diversity levels in various cotton gene pools and genomic groups, varietals and breeding collections (Iqbal et al., 2001). A narrow genetic base of cultivated cotton genotypes is one of the major factors causing the current declines in cotton yields and quality (Paterson et al., 2004), largely due to a lack of innovative tools to effectively exploit the genetic diversity of Gossypium species. The most effective utilization of the genetic diversity of Gossypium requires modern genomic technologies that help to reveal the molecular basis of agronomically important genetic variations. Efforts have been performed to characterize the cotton germplasm using allozymes, restriction fragment length polymorphism (RFLP) (Wendel and Brubaker, 1993), random amplified polymorphic DNA (RAPD) (Iqbal et al., 1997), amplified fragment length polymorphism (AFLP) (Rana et al., 2005) and simple sequence repeat (SSR) markers (Reddy et al., 2001; Lacape et al., 2007). These characterizations have provided useful knowledge for understanding the genetic diversity and organization of
<table>
<thead>
<tr>
<th>Primers</th>
<th>Chromosomes</th>
<th>Positions</th>
<th>Total no of alleles</th>
<th>Polymorphic alleles</th>
<th>Percentage polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL1053</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>BNL1421</td>
<td>A13</td>
<td>69.4</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>BNL1672</td>
<td>A9</td>
<td>60.0</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>BNL3280</td>
<td>D10</td>
<td>107.2</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>BNL3359</td>
<td>A6</td>
<td>134.6</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>BNL3590</td>
<td>A2</td>
<td>61.0</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>BNL409</td>
<td>A13</td>
<td>127.1</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>BNL448</td>
<td>D4</td>
<td>22.7</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>BNL946</td>
<td>D10</td>
<td>61.2</td>
<td>5</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>JESPR220</td>
<td>D4</td>
<td>102.9</td>
<td>4</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>JESPR274</td>
<td>A9</td>
<td>42.8</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>JESPR291</td>
<td>D8</td>
<td>152.0</td>
<td>4</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>NAU1070</td>
<td>D3</td>
<td>13.5</td>
<td>3</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>NAU1102</td>
<td>D5</td>
<td></td>
<td>4</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>NAU1103</td>
<td>D11</td>
<td>7.5</td>
<td>4</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>NAU1141</td>
<td>A13</td>
<td>31.2</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU1156</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU1162</td>
<td>A3</td>
<td>105.3</td>
<td>6</td>
<td>5</td>
<td>83</td>
</tr>
<tr>
<td>NAU1218</td>
<td>A6</td>
<td>57.6</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU1230</td>
<td>D5</td>
<td>0.2</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU1233</td>
<td>A10</td>
<td>40.2</td>
<td>6</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>NAU1366</td>
<td>A8</td>
<td>43.8</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>NAU1366</td>
<td>D11</td>
<td>142.7</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>NAU1369</td>
<td>A1</td>
<td>27.9</td>
<td>6</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>NAU2083</td>
<td>D4</td>
<td>0.0</td>
<td>5</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>NAU2162</td>
<td>D8</td>
<td>77.1</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU2169</td>
<td>D2</td>
<td>24.1</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU2190</td>
<td>A2</td>
<td>5.9</td>
<td>3</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>NAU2265</td>
<td>A10</td>
<td>2.6</td>
<td>6</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>NAU2317</td>
<td>D2</td>
<td>54.3</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU2336</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>NAU2335</td>
<td>A1</td>
<td>40.1</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU2419</td>
<td>D8</td>
<td>70.5</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU2439</td>
<td>A4</td>
<td>82.2</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU2477</td>
<td>D5</td>
<td>175.2</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>NAU2503</td>
<td>D3</td>
<td>81.1</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU2691</td>
<td>D5</td>
<td>87.4</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU2697</td>
<td>D13</td>
<td></td>
<td>6</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>NAU2980</td>
<td>A7</td>
<td>70.7</td>
<td>5</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>NAU2995</td>
<td>D13</td>
<td>98.6</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU3011</td>
<td>D7</td>
<td>30.7</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU3053</td>
<td>D5</td>
<td>10.0</td>
<td>7</td>
<td>6</td>
<td>86</td>
</tr>
<tr>
<td>NAU3092</td>
<td>D5</td>
<td>181.0</td>
<td>5</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>NAU3095</td>
<td>D9</td>
<td>23.9</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU3100</td>
<td>A6</td>
<td>36.4</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU3206</td>
<td>A8</td>
<td>70.6</td>
<td>5</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>NAU3267</td>
<td>D2</td>
<td>104.5</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU3299</td>
<td>A1</td>
<td>102.9</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU3254</td>
<td>A1</td>
<td>74.0</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>NAU3385</td>
<td>A13</td>
<td>81.5</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU3398</td>
<td>A9</td>
<td>119.2</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU3414</td>
<td>D7</td>
<td>7.0</td>
<td>4</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>NAU3424</td>
<td>A5</td>
<td>117.0</td>
<td>4</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>NAU3529</td>
<td>D7</td>
<td>121.5</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU3608</td>
<td>A7</td>
<td>23.1</td>
<td>6</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>NAU3654</td>
<td>A12</td>
<td>85.0</td>
<td>4</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>NAU3660</td>
<td>D3</td>
<td>117.3</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU3901</td>
<td>D10</td>
<td>30.9</td>
<td>8</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>NAU3916</td>
<td>A1</td>
<td>53.3</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU4073</td>
<td>D9</td>
<td>99.6</td>
<td>4</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>NAU418</td>
<td>A2</td>
<td>52.8</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU453</td>
<td>D10</td>
<td>4.6</td>
<td>4</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>NAU462</td>
<td>A9</td>
<td>117.5</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU483</td>
<td>A3</td>
<td>28.0</td>
<td>4</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>NAU4956</td>
<td>D7</td>
<td>51.0</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU5005</td>
<td>D5</td>
<td></td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU5091</td>
<td>D11</td>
<td>66.5</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>NAU5189</td>
<td>D9</td>
<td>140.1</td>
<td>3</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>NAU6191</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>NAU808</td>
<td>A2</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>241</td>
<td>147</td>
<td>4024.9</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>3.44</td>
<td>2.10</td>
<td>57.50</td>
</tr>
</tbody>
</table>
Fig 1. UPGMA tree showing genetic relationships of 50 Pakistani cotton cultivars as revealed by 70 SSR markers, the cultivar names from (1 to 50) as mentioned in table 2.

various cotton gene pools found in diverse regions, and the information has been integrated into the effective management of the cotton germplasm in some cotton breeding programs for the control of the genetic diversity. The recent development of plentiful cotton SSR markers has had a more positive effect on the molecular characterization of the cotton germplasm released from specific cotton breeding programs across the world (Zhang et al., 2008). In this study, the main objective was to assess the level of genetic diversity of 50 representative Pakistani cotton cultivars introduced from different origins to specify the primary sources of the germplasm for a variety of improvement programs.

Results and discussion

Allelic diversity of SSR markers

A total of 23 (24.7%) of the 93 SSR primer pairs screened revealed monomorphic bands across the 50 cultivars, indicating a considerable homogeneity of the cotton genome; 241 SSR alleles were detected, with an average of 3.44 alleles per primer, of this, only 147 (60 %) alleles were polymorphic across the 50 cultivars (Table 2), resulting in 57.5 % polymorphism, with the average number of polymorphic alleles per primer being 2.10. However, these polymorphic alleles could include some null alleles because it was difficult to separate non-amplification due to the experimental error from null alleles. The number of polymorphic alleles detected per primer pair ranged from one to eight, with an average of 2.10 alleles per primer pair. The maximum number of band fragments was produced by the primers NAU1070 and NAU 3901 (8 bands), the most informative primer with 75% polymorphism, whereas the minimum number of fragments produced (for many primers with various polymorphism) was 2 bands (Table 1). The average sizes of the alleles were found to be in the 50 to 1000 bp range. The SSR markers revealed a considerable amount of variation in the sampled genome, even though the overall polymorphism detected for these cotton cultivars was relatively low. The narrow genetic base of cotton has been mentioned in many studies using such molecular markers as SSRs (Bertini et al., 2006; Zhang et al., 2011; Kalivas et al., 2011), within Upland cultivars generally revealing a low level of genetic variety. There was little variation in the estimation of the molecular diversity among the Upland cultivars (G. hirsutum); however, Abdurakhmonov (2007) reported that the genetic distance for the Upland cultivars was in the 0.01 to 0.28 range. The simple sequence repeat (SSR) allelic diversity found in our population for association
analysis is approximately the same as the total diversity presented in more extended studies. The same mean number of alleles per locus as in our study was found in a collection of 106 accessions, with 2.13 SSR alleles (Guo et al. 2006).

Genetic relationships and cluster analysis

The data obtained from the SSR analysis was used to generate a similarity matrix using the Nei (1972) method with data from 70 SSR markers. The resulting matrix showed a mean genetic similarity of 0.315 among the 50 genotypes, revealing a high level of genetic relatedness. With regard to the pairwise combinations, the genetic similarities between the genotypes varied from 0.1 between CIM-446 and CIM-448 to 0.53 between CIM-482 and MHN-6070 and STAPM-82 and AYT-85094 (Table 3). Cultivar CIM-446 showed a high similarity (0.10) with the CIM-448 cultivar developed by the Central of Cotton Research Institute Multan (CCRI). Conversely, cultivar CIM-482 showed a high similarity (0.53) with cultivar MHN-6070 from different institutes. Using the clustering based on the UPGMA analysis, a dendrogram was constructed for the 50 genotypes with 70 microsatellite primers, as presented in Figure 1. Based on the SSR similarity, the 50 cultivars revealed several variation patterns. A single genotype, UA-73, appeared at the base of the dendrogram, with the three independent sister genotype entries first (MHN-802 and AYT-85094) second (CIM-482 and CIM-506) and third (XIAO-VE MiAN, XU-2HOU-142 and STAPM-82) from the top of the dendrogram (Figure 1). There were three major clusters and some sub-clusters distinguished in the modern cultivars. Cluster A consisted of sub-cluster A1 (MNH-6070, 299-F, MHN-814 and L S-S-I), A2 (UA-7-25/46, FH-125, CIM-1100, MHN-812, MG-66, BT-2009, 841/52, MNH-638), Cluster B consisted of cultivars (U-45/143, U-4 and S-12), and Cluster C consisted of sub-cluster C1 (CIM-109, CIM-446, CIM-448, CIM-534, CIM-473 and M-944-00-0243) and C2 (TH-35/99, CIM-4/99, MHN-552, NIAB-824, MHN-636, NIBGE-4, CRS-2007, FH-901, FH-900, FH-113, MHN-807, MHN-806, SLS-1, MS-40, 4F, GR-156, BH-118, S-11, AM-82, FH-1000 and UA-13-102) (figure 1). It was clear that the clustering was not associated with the breeding origin, as each cluster consisted of cultivars released from different breeding programs. The sister cultivars (CIM-482 and CIM-506) are from the same breeding station (Central Cotton Research Institute) from different breeding periods and parentage, as reported by Khan et al. (2009). However, the other sister cultivars (MHN-802 and AYT-85094) were also from different breeding institutes, whereas XIAO-VE MiAN, XU-2HOU-142 and STAPM-82 were exotic lines. The inconsistencies between the cultivar clustering and known parentage of these cotton cultivars in this study revealed a narrow genetic base, in agreement with the results of Iqbal et al. (2001). However, different recent studies have reported a relatively higher genetic diversity, with an average genetic distance of up to ~37.77% in G. hirsutum, as based on the analysis of some germplasm resources from Pakistan (Khan et al., 2009), Brazil (Bertini et al., 2006), China (Liu et al., 2011; Zhang et al., 2011) and India (Chaudhary et al., 2010), results obtained from SSRs or a combination of SSR and RAPD markers. Sakpal et al. (2011) reported genetic diversity (up to 57%) for 91 Upland cotton accessions with genetic male sterility maintainer and restorer properties that was similar to the finding in our study (57.5%). These results suggested the presence of useful genetic diversity both in exotic and breeding line resources. There is a need for further evaluation of the molecular genetic diversity through the application of additional markers across upland cotton genomes to improve the resolution and the effective use of these tools in breeding programs. Such efforts will address the current concerns on the narrowness of the genetic base of widely grown Upland cotton cultivars. However, studies of the estimated molecular genetic diversity still offer a useful guide for cotton breeding; as such studies are more informative than selection and traditional pedigree analysis. The characterization of cotton cultivars using SSR markers provided a useful guide for selecting specific germplasm with distinct genetic backgrounds in efforts to diversify cotton breeding programs.

Material and methods

Plant material

The seeds of 50 different genotypes of *Gossypium hirsutum* were collected from Central Cotton Research Institute (CCRI) Multan, Pakistan, and Cotton Research Station Multan, Pakistan. These *Gossypium hirsutum* accessions were evaluated for their genetic diversity. The cotton cultivars were grown in a greenhouse. The seeds of all 50 accessions were planted on 12 May 2011 in polyethylene bags, measuring 25 × 5 cm, and filled with approximately 1.15 kg of soil (peat, sand and soil, 1:1:1). All of the bags were saturated to field capacity before planting the seeds. The seeds were soaked overnight, and 4 seeds/bag of each cultivar were sown at a depth of 2 to 3 cm. The seeds started to germinate on 14 May 2011. After germination, only one plant/bag was maintained, and the remaining were uprooted.

Genomic DNA isolation

For extraction of the genomic DNA from each accession group, 4–5 young fully expanded leaves were collected and stored at ~80°C. The genomic DNA was isolated from the frozen leaf tissues using the cetyltrimethylammonium bromide (CTAB) method described by (Zhang et al. 2000). The DNA samples were stored at -20 °C until further use. The DNA quality was evaluated with 1% agarose gel electrophoresis prepared using 0.5X TAE buffer, and ethidium bromide (10 ng/100 ml) was added to the gel to stain the DNA bands. The samples were electrophoresed for approximately 30 minutes after which the products were viewed using an ultraviolet transilluminator and photographed using the Syngene Gel Documentation System. The DNA concentration was estimated by the absorbance at 260 nm (Sambrook et al., 1989). The working DNA samples (containing 50 ng/µl) were stored at 4°C for genotyping.

Sources of microsatellite markers

The BNL primers were from Research Genetics Co. (Huntsville, AL, USA, http://www.resgen.com), the JESP R primers were the sequences of Reddy et al. (2001), and the SSR primers of NAU were the EST-SSR sequences of Han et al. (2006).

Genotyping with SSR markers

All 50 accessions were genotyped using a 70 core set of SSR marker primers. These chromosome-specific primer pairs
Table 2. Fifty Pakistani cotton cultivars with origin of release.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Accession Name</th>
<th>Center Name</th>
<th>Sr. No</th>
<th>Accession Name</th>
<th>Center Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XIAO-VEMIAN</td>
<td>Exotic lines</td>
<td>26</td>
<td>FH-125</td>
<td>CRS, FSD</td>
</tr>
<tr>
<td>2</td>
<td>XU-2HOU-142</td>
<td>Exotic lines</td>
<td>27</td>
<td>MNH-812</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>3</td>
<td>STAPM-82</td>
<td>Exotic lines</td>
<td>28</td>
<td>AM-82</td>
<td>CCRI, Multan</td>
</tr>
<tr>
<td>4</td>
<td>U-4(5143)</td>
<td>Exotic lines</td>
<td>29</td>
<td>S-12</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>5</td>
<td>UA-7/25/46</td>
<td>Exotic lines</td>
<td>30</td>
<td>4 F</td>
<td>CRS, FSD</td>
</tr>
<tr>
<td>6</td>
<td>U-4</td>
<td>Exotic lines</td>
<td>31</td>
<td>GR-156</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>7</td>
<td>UA-13-102</td>
<td>Exotic lines</td>
<td>32</td>
<td>299-F</td>
<td>CCRI, Multan</td>
</tr>
<tr>
<td>8</td>
<td>UA-73</td>
<td>Exotic lines</td>
<td>33</td>
<td>MS-40</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>9</td>
<td>CIM-109</td>
<td>CCRI, Multan</td>
<td>34</td>
<td>SLS-1</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>10</td>
<td>CIM-446</td>
<td>CCRI, Multan</td>
<td>35</td>
<td>MNH-806</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>11</td>
<td>CIM-448</td>
<td>CCRI, Multan</td>
<td>36</td>
<td>MNH-814</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>12</td>
<td>CIM-482</td>
<td>CCRI, Multan</td>
<td>37</td>
<td>AYT-85094</td>
<td>CCRI, Multan</td>
</tr>
<tr>
<td>13</td>
<td>CIM-506</td>
<td>CCRI, Multan</td>
<td>38</td>
<td>MNH-807</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>14</td>
<td>CIM-534</td>
<td>CCRI, Multan</td>
<td>39</td>
<td>MNH-802</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>15</td>
<td>CIM-473</td>
<td>CCRI, Multan</td>
<td>40</td>
<td>S41/52</td>
<td>CCRI, Multan</td>
</tr>
<tr>
<td>16</td>
<td>CIM-1190</td>
<td>CCRI, Multan</td>
<td>41</td>
<td>L-S-S</td>
<td>CRS, FSD</td>
</tr>
<tr>
<td>17</td>
<td>CIM-4/99</td>
<td>CCRI, Multan</td>
<td>42</td>
<td>FH-901</td>
<td>CRS, FSD</td>
</tr>
<tr>
<td>18</td>
<td>TH-35/99</td>
<td>Exotic lines</td>
<td>43</td>
<td>FH-900</td>
<td>CRS, FSD</td>
</tr>
<tr>
<td>19</td>
<td>BH-118</td>
<td>CRS, BWP</td>
<td>44</td>
<td>FH-1000</td>
<td>CRS, FSD</td>
</tr>
<tr>
<td>20</td>
<td>MNH-6070</td>
<td>CRS, Multan</td>
<td>45</td>
<td>CRS-2007</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>21</td>
<td>MG-66</td>
<td>CRS, Multan</td>
<td>46</td>
<td>NIBGE-4</td>
<td>NIBGE, FSD</td>
</tr>
<tr>
<td>22</td>
<td>BT-2009</td>
<td>CRS, BWP</td>
<td>47</td>
<td>NIAB-824</td>
<td>NIAB, FSD</td>
</tr>
<tr>
<td>23</td>
<td>M-944-00-0243</td>
<td>Exotic lines</td>
<td>48</td>
<td>MNH-636</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>24</td>
<td>FH-113</td>
<td>CRS, FSD</td>
<td>49</td>
<td>MNH-638</td>
<td>CRS, Multan</td>
</tr>
<tr>
<td>25</td>
<td>S-11</td>
<td>CRS, Multan</td>
<td>50</td>
<td>MNH-552</td>
<td>CRS, Multan</td>
</tr>
</tbody>
</table>

CCRI=Central Cotton Research Institute; NIAB=Nuclear Institute for Agriculture and Biology; CRS=Cotton Research Station; FSD=Cotton Research Institute, Faisalabad;, BWP=Cotton Research Station, Bahawalpur

Table 3. Matrix of genetic distances based on percentage disagreements, the cultivars names from (1 to 50) as mentioned in table 2.
were selected using the results of different laboratories, published papers (Siu et al. 2000, Han et al. 2004; Shen et al. 2005; Abdurakhmonov 2007), and based on their informativeness relative to important QTLs and chromosome distribution. The PCR amplifications were performed in a 10 μl reaction mix containing 1 μl 10× PCR buffer, 0.2 μl dNTPs (5 mM each), 0.1 μl 25 mM MgCl₂, 0.1 μl Taq DNA polymerase, and 1 μl (50 ng) genomic DNA. The microsatellites were amplified using the standard PCR procedures described by Zhang et al. (2000).

Silver staining and development of bands

After a specific migration of the band on the gel, the gels were placed in fixing solution (40 % ethanol and 10 % glacial acetic acid) for 20 minutes and then washed three times with distilled water and stained with silver staining solution (0.2 % AgNO₃) for 20 minutes. After staining, the gels were again washed three times with distilled water for 20 seconds, and the developing solution (3 % NaOH and 0.05 % formaldehyde) was applied for 3-5 minutes.

Data analysis

A comparison of the fifty core accessions of G. hirsutum L. was performed on the basis of the presence or absence of bands generated by the SSR primers. The number of bands produced for each primer was scored manually for presence (1) or absence (0), and a binary matrix was generated and then used for the analysis. The pairwise genetic distances between individuals were calculated by the percentage identity to abiotic stresses and fiber quality.

Conclusion

The current study showed that microsatellite markers are efficient for measuring the genetic diversity and relatedness and for identifying varieties of cotton. The results revealed relatively low genetic diversity of Pakistani cotton cultivars and also generate information about levels of genetic relatedness. We suggest the further evaluation of the molecular genetic diversity in efforts to conserve the maximum diversity level by applying additional markers to improve the resolution of these tools for use in breeding programs. This is because the narrowness of the genetic diversity in the germplasm was associated with the recent and potentially future declines in G. hirsutum L. production and its quality, serving as a timely warning to increase the speed of the efforts to widen the genetic base of the germplasm resource by mobilizing new genetic variations from the gene pool. The wide ranges of the genetic diversity of the genus, particularly the diversity of exotic wild cotton germplasm, are key resources to improve cotton cultivars and address the various essential problems associated with the resistance to insects and pathogens, tolerance to abiotic stresses and fiber quality.

Acknowledgements

This work was supported by TWAS (the academy of sciences for the developing world). The authors express their gratitude to Prof. Dr. Tianzhen Zhang for providing SSR markers, Dr. Saghir Ahmed and Ch. Rehmat Ali for providing cotton seeds. We also thank Dr. Nada Babiker Hamza for data analysis.

References

Nei M (1972) Genetic distance between populations. Amer Nat: 283-292
resources for cotton genome research. J Cotton Sci 5(2):103-113