Components of variance and inter-relationship of important traits for maize (Zea mays) breeding

Ivan Ricardo Carvalho1, Maicon Nardino1, Gustavo Henrique Demari1, Alan Junior de Pelegrin1, Mauricio Ferrari1, Vinicius Jardel Szareski1, Victoria Freitas de Oliveira1, Mauricio Horbach Barbosa2, Veli Queiróz de Souza1, Antonio Costa de Oliveira1, Luciano Carlos da Maia1

1UFPEL - Federal University of Pelotas, Capão do Leão, RS, Brazil
2UFSM - Federal University of Santa Maria Campus de Frederico Westphalen, RS, Brazil
3UNIPAMPA - Federal University of Pampa, Dom Pedrito, RS, Brazil

*Corresponding authors: carvalho.irc@gmail.com

Abstract

The increase of maize yield is possible by increasing either the cultivated area, use of best technologies and also more productive genotypes. So, the aim of this study was to estimate the variance components and genetic parameters (individual REML), phenotypic linear correlations, genetic, environmental and canonical for agronomically important traits in maize. The experiments were conducted in the growing seasons of 2013/2014 in four environment of Rio Grande do Sul, Brazil. The design used was a randomized block arranged in a factorial design, including 79 maize of hybrids (simple/narrow genetic base) × four cultivation environments, arranged in three replicates. The measured traits were plant height, insertion ear height, prolificacy, ear diameter, ear length, number of grain rows per ear, number of grain per row, stem diameter, stem mass, ear mass, grains weight per ear, hundred grains weight and grains yield. The estimates of the variance components and genetics parameters (REML) were made through the MHPKVG method, obtaining the genotypic variance, the variance of genotype × environment interaction, residual variance, individual phenotypic variance, heritability with broad sense to the total phenotypic effects, heritability of the genotypes mean, accuracy for the selection of the genotypes, determination coefficient to the effects of genotype × environment interaction, genotypic correlation between performance of the environment, coefficient of genotypic variation, coefficient of residual variation and a overall average. We created a linear phenotypic, genetics, environmental and a canonical correlation. The variance components and genetics parameters (REML) identified a contribution of the genetic variation for genotype × environment interaction, and heritability in a broad sense for the ear diameter, number of grains row and stem diameter. Phenotypic, genetic and environment linear positive trends was presented between the prolificacy as ear diameter and the grains mass per ear with the grain yield. The three canonical pairs were significant with intergroup dependence, by which the grains yield favored by the plant height, insertion ear height, prolificacy, ear diameter and number of grains per row. The criteria established by this study can be used in quantitative genetics research and maize genetic improvement to increase grain yield.

Keywords: biometry, plant breeding, interrelationships.

Abbreviations: PH, plant height, EH, insertion ear height, PRO, prolificacy, ED, ear diameter, EL, ear length, NRE, number of grain rows per ear, NGR, number of grains per row, SD, stem diameter, SM, stem mass, EM, ear mass, GWE, grains weight per ear, HGW, hundred grains weight, GY, grains yield, σ²G, genotypic variance, σ²INT, genotype × environment interaction variance, σ²E, residual variance, σ²P, phenotypic individual variance, h²G, heritability with broad sense to the total phenotypic effects, h²mg, heritability of the genotypes mean, h²g, accuracy for the selection of the genotypes, C²INT, determination coefficient to the effects of genotype × environment interaction, fGloc, genotypic correlation between performance of the environment, CVg, coefficient of genotypic variation, CVe, coefficient of residual variation, OA, overall average, REML, Restricted Maximum Likelihood and MHPKVG method of harmonic mean weighted by genotypic values.

Introduction

The maize (Zea mays) presented as one of the main cereal cultivated in Brazil, with production amount of 82.3 million tons of grains, and average productivity of 5.4 tons per ha1 in 2015/2016 crop season (Conab, 2015). The importance of the maize is referred to its wide use, being a raw material for human diet, but also to supply the input of several production chains (Garcia et al., 2006). In this context, it is necessary to constantly keep up the production levels of maize, which can be reached by increasing the area sown, use of best management technologies and cultivation of more productive genotypes (Carvalho et al., 2014). The grain yield is influenced by abiotic and biotic factors, intrinsic characteristics of the genotype, cultivation environment, and genotype × environment interaction (GxE) (Costa et al., 2010). The maize breeding encounters interference of G × E interaction, such as the difficulty of finding the best genotypes, phenotypic stability and adaptability, the nature of the interaction of simple or complex and a differential answer of the characters that determine the potential productive of the culture (Ribeiro and Almeida, 2011). Conversely, some researches have pointed out that the grains mass, the ear dimensions, grains number per plant (Lopes et al., 2007), the plant stature (De Souza et al., 2014), the prolificity (De Carvalho et al., 2001),...
the number of grains per ear rows (Balbinot et al., 2005) are
determinant to increase the grains yield in maize.

Therefore, it is crucial to understand and quantify the
genetics variation involved in the phenotypic expression, and
the fraction of the effects of the interaction $G \times E$ from the
genetics effects. In this way, evaluation of the variance
components and the genetics parameters of agronomically
important characteristics allows to reveals important
information to the breeders, wich in the future will serve as a
support to decide witch selection strategy can be proceded.

The search for more reliable results is viable to apply
methodology based in mix models. For more reliable results
it is feasible to apply methodologies based on mixed models,
taking into account the Restricted Maximum Likelihood
(REML) which makes it possible to estimate the variance
components and genetic parameters more accurately
(Resende et al., 1996).

The linear correlation evidence a trend of association
between two characters. The phenotypic coefficient is due to
genetics and environmental effects. The genetics causes are
linked to pleiotropy where one determinate gene effects
simultaneously two or more characters (Falconer, 1987), and
the genetic links assume unstable nature (Churata et al.,
1996). The environment correlation is intended to indicate the
direction of environmental effects on linear association for
both characters (Falconer, 1987). However, due to big
number of characters measured and the difficulty in the
correct interpretation of theirs interrelations we need to
employ analysis that show which groups of characters are
determinants to the main yield components. In this context,
the canonical correlations are important for the breeding
(Cruz et al., 2012).

There is lack of information for estimation of variance
components and genetics parameters per mix models, linears
and canonical correlations in simple hybrids maize cultivated
in different environments in Rio Grande do Sul, Brazil. This
work aimed to estimate the variance components and genetic
parameters (REML), the phenotypic linear and canonical
correlations, genetics and environmental effects for the
characters of agronomic interest in maize.

Results and Discussion

Estimation of variance components and genetic parameters

The variance components and genetics parameters (REML)
were estimated for the 79 simple maize hybrids cultivated in
eighteen environments of Rio Grande do Sul, Brazil (Table 2).
The phenotypic magnitude of the character is closely related to
effects attributed to the environment and a fraction is
resulted from genetics variation. Therefore, to establish a
relationship between the phenotypic individual variance (σ^2_P)
and the genotypic variance (σ^2_G), there is possible evidence
that the ear diameter (ED), number of grains rows per ear
(NRE), stem diameter (SD), stem mass (SM), and thousand
grains weight (TGW) are determinated per 31.2%, 32.2%,
45.0%, 27.9% and 20.9% due to genetics effects,
respectively. In contrast, a prolificacy (PRO) and ear mass
(ME) presented big influence of the environment on
phenotypic proportions. The major environmental factors
influence the phenotypic variation of 25 hybrids maize
cultivated in eight environments. They revealed that the grain
weight per ear (4.2%) and the number of tassel branches
(30.9%) were the characters more influenced by the genetic
effects (De Souza et al., 2015).

The largest relative contributions of the genotypic variation
(σ^2_G) and genotype \times environment interaction variation
($\sigma^2_{G\timesE}$)

were verified for the ED (78.6%), NRE (92.9%), and SD
(91.0%). However, the phenotypic individual variance (σ^2_P)
contributed in a superior way to the characters EH (78.1%),
EM (77.4%), GWE (92.6%) and to DY (66.0%). The heritability
revealed a fraction of genetic variance existing in the
phenotypic variance and can indicate experimental
reliability and precision for the phenotype (Ramalho et al.,
2012). Furthermore, the heritability with broad sense for the
total phenotypic effects without the interference of genotype x
environment interaction (h^2_P) reported higher magnitudes to
the characters ED (0.31), NRE (0.32), SD (0.45), SM (0.27)
and TGW (0.24). Similarly, the heritability of genotype
average (h^2_{ave}) was considered high for the characters ED
(0.81), NRE (0.84) and SD (0.89).

The greatest accuracies provide high experimental
precision, effectiveness of selection strategies and genetic
gains to the characters (Da Costa et al., 2000). High accuracies
(0.70<σ_{gij}) were obtained for the characters PH, ED, EL, NRE, NGR, SD, MSM and TGW, moderate
(0.50<σ_{gij}<0.65) for EH, EM and GY, and low
(0.10<σ_{gij}<0.40) for PRO and GWE according to Resende
and Duarte (2007). The determinated coefficient of the genotype
\times environment interaction effects ($C^2_{g\timesE}$) indicated
the participation of the interaction effects in total variation of
traits, where the PH and EH presented the greatest intensity
with 0.30 and 0.36, respectively. The genotypic correlation
between the environment performance (h^2_{ave}) presented higher
(0.70<σ_{gij}) for the characters ED (0.78), NRE (0.92)
and SD (0.90) and revealed the biggest participation of the
interaction characterized as simple (Pupin et al., 2015). Low
coefficients (h^2_{ave}<0.50) were expressed for PH (0.30),
EH (0.21), PRO (0.18), EM (0.22), GWE (0.07) and GY (0.33).

For these characters a low genotypic correlation between the
environments indicate greater interactions effects with
complex nature and results in lower phenotypic stability of
phenotypes (Rosado et al., 2012).

The genotypic variation coefficient (C^2_{gij}) presented higher
magnitudes to the characters SM (14.54%) and TGW
(8.11%) and indicates greater genetic variability of the simple
maize hybrid for these characters. In contrast, the PH
(4.16%), PRO (3.69%), ED (4.05%) and the GWE (3.49%) revealed smaller contributions to the genetic variation
to phenotypic performance. The residual variation coefficient
(C^2_{eij}) presented above the GY (29.25%) because this character was influenced by 9.53% through the genotype \times
environment interaction (σ^2_{INT}), and 14.44% to residual
effects (σ^2_E). The overall average of grains yield (GY) for
the hybrid maize cultivated in the four producing regions at the
Rio Grande do Sul was 8449.61kg ha$^{-1}$ of grains. The average
results reached 47.00% higher than the brazilian average
(4478.00 kg ha$^{-1}$), 15.42% above the average (7146.00 kg ha$^{-1}$)
of the south region of Brazil and 34.38% higher to the
productivities obtained at the Rio Grande do Sul (5544.00 kg ha$^{-1}$)

Phenotypic, genetic and environmental correlation

The estimates of linear correlation for the characters PH, EH,
PRO, ED, EL, NRE, NGR, EM, GWE, TGW, GY, SD, and
SM were measured in 79 hybrids of maize cultivated in four
environment (N=948) at the Rio Grande do Sul, Brazil (Table
3). About 78 linear associations realized, where 56
phenotypic correlations (r_P) were significant by the t test, 9
phenotypic correlations (r_G) and 70 environmental
correlations (r_E) were significant with the bootstrap method
at 5% of probability, where the coefficient of linear
correlation followed the classification proposed par Carvalho
et al. (2004). Overall, the genotypic associations featured significantly higher than the phenotypic. Our studies determined that these trends are from the increased contribution of genetic fraction and expression of character magnitude with smaller environmental effects (Churuta et al., 1996).

The linear associations were significant for the PRO × ED \((r_p=0.55; r_g=0.59; r_e=0.10) \) and GWE × GY \((r_p=0.70; r_g=0.75; r_e=0.32) \). These results show that the positive genetic trend of the maize hybrid increase the number of the ears per plant along with ear diameter. Similarly, ears with higher grain mass are associated with more productive genotypes. For both of linear associations the environment influence was similar to the positive effects that increase the characters. When the coefficient of phenotypic correlation \((r_p) \) is less than the genetic \((r_g) \), it indicates that the phenotypic manifestation is controlled in a superior manner by genotypic effects and its interpretation can be used in the selection of strategies to have greater reliability and efficiency (De González et al., 1994).

Phenotypic and genotypic trends were negative for the ED × NGR \((r_p=0.22; r_g=0.40; r_e=0.41) \) and NGR × SD \((r_p=0.44; r_g=0.58; r_e=0.15) \). However, the environmental effects presented positive. Ears with smaller diameter genetically reduce the number of the grains contained in each ear row, and consequently result in stems with smaller diameter. For both associations, the environmental effects influenced with the same broad sense heritability values for these characters. However, when the broad sense of the genetics and environmental coefficients are opposite, it becomes indicative that genetic and environmental variation determined character distinctly (Falconer, 1987).

The negative genetics associations were observed for the characters EL × SD \((r_p=0.26; r_g=0.31) \) and NGR × SM \((r_p=0.40; r_g=0.48) \). However, environmental effects were evidenced positively. Trends point that ears with superior longitudinal dimensions reduced the stem diameter. This association was proved the inverse relationship expressed through the grains number per ear row and the stem mass. The grains yield presented dependent to the agronomics character sets. In this context, the possible envidence was PRO × GY \((r_p=0.65; r_g=0.16) \) that revealed genetic correlation high and positive. However, the environmental effects presented negative associations. When the genetical characteristics benefically influenced this association, the environment penalized its effects.

Plant height (PH) revealed positive phenotypic and environment trends with EH \((r_p=0.80; r_g=0.61) \), ED \((r_p=0.42; r_g=0.23) \), EM \((r_p=0.42; r_g=0.28) \), GWE \((r_p=0.42; r_g=0.24) \), TGW \((r_p=0.39; r_g=0.29) \), GWE \((r_p=0.37; r_g=0.17) \), SD \((r_p=0.23; r_g=0.07) \), and SM \((r_p=0.32; r_g=0.26) \). The linear associations show that taller plants increase the ear height, and can change the arrangement of the spikes and the plant balance. In total, they can modify the dimensions and the ear mass positively to the grain yield. However, it can result in lodging and breakage of stalk in field conditions. Previous reports have defined that plant height in maize is dependant to the area and leaf architecture, photosynthetic efficiency and hormonal balance (De Souza et al., 2015). It highly influenced by genotype × environment interaction, technological level of used genotype, and water availability (Carvalho et al., 2014).

The prolificacy (PRO) showed low and positive phenotypic association with EM \((r_p=0.23; r_g=0.10) \), SD \((r_p=0.25; r_g=0.07) \), and SM \((r_p=0.25; r_g=0.08) \). However, environmental effects presented low and positive magnitudes for all the associations. The results indicate that the increase in the ears number per plant benefited the increase of ear mass. However, this may be due to bigger dimensions and the stem mass, which is characterized as assimilated drain to the plant.

The ear diameter (ED) presented phenotypic and environment correlation positive with NRE \((r_p=0.55; r_g=0.40) \), EM \((r_p=0.71; r_g=0.68) \), GWE \((r_p=0.64; r_g=0.64) \), TGW \((r_p=0.61; r_g=0.52) \), GY \((r_p=0.57; r_g=0.24) \), SD \((r_p=0.76; r_g=0.55) \), and SM \((r_p=0.59; r_g=0.59) \). Together, the ear length (EL) was associated with NRE \((r_p=0.46; r_g=0.64) \), EM \((r_p=0.46; r_g=0.66) \), GWE \((r_p=0.49; r_g=0.64) \), MMG \((r_p=0.33; r_g=0.41) \), and the GY \((r_p=0.28; r_g=0.21) \). The ear diameter and the ear length presented similar trends that resulted in ears with higher dimensions and mass. However, the magnitude of grain mass was incremented leading to the higher grain yield. The environmental effects were positive for all the associations, showing that these characters are phenotypically inherent. The ear length and the ear diameter are determinants for thousand grains weight and grains mass per ear. These characters can be used for an indirect selection procedure to obtain maize genotypes with production (Lopes et al., 2007).

The number of grains row per ear (NRE) was negatively associated to NGR \((r_p=0.27) \). In contrast, phenotypic and environmental positive trends were observed for EM \((r_p=0.26; r_g=0.24) \), GWE \((r_p=0.26; r_g=0.21) \), SD \((r_p=0.46; r_g=0.37) \), and SM \((r_p=0.24; r_g=0.22) \). The number of grains row per NGR revealed positive phenotypic and environment trends with the GWE \((r_p=0.28; r_g=0.61) \). In contrast, the phenotypic coefficient was low and negative with TGW \((r_p=0.26; r_g=0.21) \) along with positive environmental effects for this association. The trends indicate that genotypes with more grain rows per ear can reduce the number of grain per row and individual mass of these grains but increase the grains mass of the ear. The grains number per ear, the dimensions and the grain mass, together with the prolificacy were essential to raise the maize productive potential. However, the characters were significantly influenced by environmental effects (Agrama, 1996).

The ear mass (EM) revealed high and positive phenotypic trends with GWE \((r_p=0.91; r_g=0.94) \), TGW \((r_p=0.70; r_g=0.56) \), and the GY \((r_p=0.63; r_g=0.31) \). It was observed that for all associations there was a considerable fraction of positive environmental effects, influencing the relationships. Ears with superior mass resulted in the increase of grains mass per ear, which is beneficial to maize yield. The previous association studies on maize lines corroborates with our results, where we verified that the thousand grains weight and the total ear mass presented direct effect on grain yield and can be used as efficient selection strategies in a breeding program (De Souza et al., 2014).

Canonical associations

The multicollinearity diagnosis was carried out and a condition number of 78.09 was obtained, indicating this featured as weak. However, there was no problem with the matrix. The canonical correlation was set between the primary income characters (group I) matching a EM, GWE, TGW and GY, and the secondary characters (group II) such as PH, EH, PRO, ED, EL, NRE, NGR, SD and a SM. In contrast with the results obtained in canonical, three pairs were significant \((p<0.01) \) by the chi-square test (Table 4).
Table 1. Descriptions of the environment, geographic coordinates, altitude (m) and soil classification.

<table>
<thead>
<tr>
<th>Cultivation environment</th>
<th>Geograph coordinates</th>
<th>Altitude</th>
<th>Soil classification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campos Borges – RS</td>
<td>28°55’36”S/53°01’40”O</td>
<td>513 m</td>
<td>Latosol darkred</td>
</tr>
<tr>
<td>Fortaleza dos Valos – RS</td>
<td>28°47’50”S/53°13’22”O</td>
<td>406 m</td>
<td>Latosol darkred</td>
</tr>
<tr>
<td>Santa Rosa – RS</td>
<td>27°52’16”S/54°28’55”O</td>
<td>268 m</td>
<td>Latosol red distroferric</td>
</tr>
<tr>
<td>Tenente Portela – RS</td>
<td>27°23’31”S/53°46’50”O</td>
<td>420 m</td>
<td>Latosol red ferricypetual almino</td>
</tr>
</tbody>
</table>

Table 2. Estimation of variance components and the genetic parameters (REML) for 79 hybrid of maize cultivated in four environments of Rio Grande do Sul, Brazil.

Variance components

<table>
<thead>
<tr>
<th>Characters</th>
<th>PH</th>
<th>EH</th>
<th>PRO</th>
<th>ED</th>
<th>EL</th>
<th>NRE</th>
<th>NGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>r²E</td>
<td>0.29</td>
<td>0.24</td>
<td>0.21</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>r²INT</td>
<td>0.12</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>r²P</td>
<td>0.45</td>
<td>0.36</td>
<td>0.29</td>
<td>0.24</td>
<td>0.24</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>r²g</td>
<td>0.30</td>
<td>0.25</td>
<td>0.21</td>
<td>0.18</td>
<td>0.17</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>C²INT</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>C²E</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>CVg(%)</td>
<td>0.56</td>
<td>0.33</td>
<td>0.37</td>
<td>0.32</td>
<td>0.29</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>CVe(%)</td>
<td>0.48</td>
<td>0.39</td>
<td>0.33</td>
<td>0.29</td>
<td>0.26</td>
<td>0.22</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 3. Estimate of phenotypic correlation (rP) and genetic (rG) and environmental (rE) for the 79 hybrids of maize cultivated in four environment on the Rio Grande do Sul, Brazil.

<table>
<thead>
<tr>
<th>Characters</th>
<th>PH</th>
<th>EH</th>
<th>PRO</th>
<th>ED</th>
<th>EL</th>
<th>NRE</th>
<th>NGR</th>
<th>EM</th>
<th>GM</th>
<th>GM</th>
<th>TGM</th>
<th>GY</th>
<th>SD</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>rP</td>
<td>0.80**</td>
<td>0.29**</td>
<td>0.42**</td>
<td>0.42**</td>
<td>0.48**</td>
<td>0.42**</td>
<td>0.59**</td>
<td>0.37**</td>
<td>0.23**</td>
<td>0.32**</td>
<td>0.58**</td>
<td>0.70**</td>
<td>0.25**</td>
<td>0.21**</td>
</tr>
<tr>
<td>rG</td>
<td>0.87**</td>
<td>0.29**</td>
<td>0.47**</td>
<td>0.42**</td>
<td>0.47**</td>
<td>0.42**</td>
<td>0.55**</td>
<td>0.42**</td>
<td>0.27**</td>
<td>0.34**</td>
<td>0.56**</td>
<td>0.70**</td>
<td>0.28**</td>
<td>0.24**</td>
</tr>
<tr>
<td>rE</td>
<td>0.61**</td>
<td>0.33**</td>
<td>0.13**</td>
<td>0.12**</td>
<td>0.28**</td>
<td>0.24**</td>
<td>0.20**</td>
<td>0.27**</td>
<td>0.16**</td>
<td>0.33**</td>
<td>0.34**</td>
<td>0.20**</td>
<td>0.13**</td>
<td>0.33**</td>
</tr>
<tr>
<td>rP</td>
<td>0.18</td>
<td>0.44**</td>
<td>0.21</td>
<td>0.13</td>
<td>0.08</td>
<td>0.52**</td>
<td>0.52**</td>
<td>0.48**</td>
<td>0.43**</td>
<td>0.26**</td>
<td>0.38**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.26**</td>
</tr>
<tr>
<td>rG</td>
<td>0.27</td>
<td>0.49</td>
<td>0.21</td>
<td>0.16</td>
<td>0.03</td>
<td>0.63</td>
<td>0.68</td>
<td>0.52</td>
<td>0.58</td>
<td>0.29</td>
<td>0.4</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
</tr>
<tr>
<td>rE</td>
<td>0.12**</td>
<td>0.27**</td>
<td>0.21**</td>
<td>0.04</td>
<td>0.20**</td>
<td>0.33**</td>
<td>0.30**</td>
<td>0.34**</td>
<td>0.20**</td>
<td>0.13**</td>
<td>0.33**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
</tr>
<tr>
<td>rP</td>
<td>0.35**</td>
<td>0.11</td>
<td>0.23</td>
<td>0.10</td>
<td>0.08</td>
<td>0.23</td>
<td>0.04</td>
<td>0.19</td>
<td>0.21</td>
<td>0.17</td>
<td>0.25**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
</tr>
<tr>
<td>rG</td>
<td>0.59**</td>
<td>0.31</td>
<td>0.31</td>
<td>0.09</td>
<td>0.12</td>
<td>0.42</td>
<td>0.35</td>
<td>0.35</td>
<td>0.65**</td>
<td>0.42</td>
<td>0.43</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
</tr>
<tr>
<td>rE</td>
<td>0.10**</td>
<td>0.06</td>
<td>0.02</td>
<td>0.06</td>
<td>0.10**</td>
<td>0.09**</td>
<td>0.07</td>
<td>0.16**</td>
<td>0.07**</td>
<td>0.08**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>1.00**</td>
</tr>
<tr>
<td>rP</td>
<td>-0.05</td>
<td>0.22**</td>
<td>0.71**</td>
<td>0.64**</td>
<td>0.61**</td>
<td>0.76**</td>
<td>0.57**</td>
<td>0.59**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
</tr>
<tr>
<td>rG</td>
<td>-0.2</td>
<td>-0.04**</td>
<td>0.77</td>
<td>0.63</td>
<td>0.76</td>
<td>0.79</td>
<td>0.59**</td>
<td>0.59**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
</tr>
<tr>
<td>rE</td>
<td>-0.45**</td>
<td>0.40**</td>
<td>0.41**</td>
<td>0.68**</td>
<td>0.64**</td>
<td>0.52**</td>
<td>0.24**</td>
<td>0.55**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
</tr>
<tr>
<td>rP</td>
<td>-0.3</td>
<td>0.38</td>
<td>0.34</td>
<td>0.4</td>
<td>0.31</td>
<td>0.34</td>
<td>0.26**</td>
<td>0.08</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
</tr>
<tr>
<td>rG</td>
<td>-0.13**</td>
<td>0.64**</td>
<td>0.66**</td>
<td>0.64**</td>
<td>0.41**</td>
<td>0.21**</td>
<td>0.31**</td>
<td>0.64**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
</tr>
<tr>
<td>rP</td>
<td>-0.27**</td>
<td>0.26**</td>
<td>0.26**</td>
<td>0.03</td>
<td>0.18</td>
<td>0.46**</td>
<td>0.24**</td>
<td>0.24**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
</tr>
<tr>
<td>rG</td>
<td>-0.36</td>
<td>0.09</td>
<td>0.24**</td>
<td>0.24**</td>
<td>0.24**</td>
<td>0.24**</td>
<td>0.24**</td>
<td>0.24**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
</tr>
<tr>
<td>rE</td>
<td>0.06</td>
<td>0.21**</td>
<td>0.09**</td>
<td>0.37**</td>
<td>0.33**</td>
<td>0.23**</td>
<td>0.10**</td>
<td>0.08**</td>
<td>1.00**</td>
<td>0.24**</td>
<td>0.30**</td>
<td>0.10**</td>
<td>1.00**</td>
<td>0.24**</td>
</tr>
</tbody>
</table>

*Genotypic variance (rG), the variance of genotype x environment interaction (r²INT), residual variance (r²E), individual phenotypic variance (r²P), heritability with broad sense to the total phenotypic effects (h²), heritability of the genotypes mean (h²mg), accuracy for the selection of the genotypes (rgg), determination coefficient to the effects of genotype x environment interaction (C²INT), genotypic correlation between performance of the environment (rgloc), coefficient of genotypic variation (CVg), coefficient of residual variation (CVe) and a overall average (OA), plant height (PH), insertion of ear height (EH), prolificacy (PRO), ear diameter (ED), ear length (EL), number of grains row per ear (NRE), number of grains per row (NGR), stem diameter (SD), stem mass (SM), ear mass (EM), grains mass (GM), thousand grains weight (TGW) and grains yield (GY).
conducted with dimensions. These associations have been proven in research form and maintain more ears per plant, and even cause larger leaf area efficiently competitive ability mass (group and length, number of grains the plant height, insertion ear height, prolificacy, ear diameter the grains mass per ear (group, and interrelationships define the increment of the ear mass and character groups correlation between groups). The canonical correlations for the primary yield characters (group I) and second characters (group II) in the canonical correlation (r) of maize with le plant height (PH), insertion of ear height (EH), prolificacy (PRO), ear diameter (ED), ear length (EL), number of grains row ear (NRE), number of grains per ear (NGR), stem diameter (SD), stem mass (SM), ear mass (EM), grains mass per ear (GM), thousand grains weight (TGW) and grain yield (GY). Table 4. Canonical loads for the primary yield characters (group I) and second characters (group II) in the canonical correlation (r) between groups, in 79 hybrid of maize cultivated in four environments on the Rio Grande do Sul, Brazil. Group I

<table>
<thead>
<tr>
<th>Characters</th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>0.95</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>GWE</td>
<td>0.90</td>
<td>0.37</td>
<td>-0.12</td>
</tr>
<tr>
<td>TGW</td>
<td>0.74</td>
<td>-0.56</td>
<td>0.06</td>
</tr>
<tr>
<td>GY</td>
<td>0.70</td>
<td>-0.13</td>
<td>-0.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characters</th>
<th>1°</th>
<th>2°</th>
<th>3°</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>0.53</td>
<td>-0.03</td>
<td>-0.15</td>
</tr>
<tr>
<td>EH</td>
<td>0.65</td>
<td>-0.02</td>
<td>-0.11</td>
</tr>
<tr>
<td>PRO</td>
<td>0.10</td>
<td>-0.38</td>
<td>-0.38</td>
</tr>
<tr>
<td>ED</td>
<td>0.79</td>
<td>0.03</td>
<td>-0.16</td>
</tr>
<tr>
<td>EL</td>
<td>0.55</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td>NRE</td>
<td>0.30</td>
<td>0.45</td>
<td>-0.06</td>
</tr>
<tr>
<td>NGR</td>
<td>0.13</td>
<td>0.79</td>
<td>-0.16</td>
</tr>
<tr>
<td>SD</td>
<td>0.60</td>
<td>-0.10</td>
<td>0.23</td>
</tr>
<tr>
<td>SM</td>
<td>0.78</td>
<td>-0.06</td>
<td>0.45</td>
</tr>
<tr>
<td>GR</td>
<td>0.83</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>R</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

The first canonical pair revealed correlation of r=0.83 between groups. When the coefficient of intergroup correlation is high it shows high dependence between the character groups (Carvalho et al., 2015). The canonical interrelationships define the incremente of the ear mass and the grains mass per ear (group I). They were favored through the plant height, insertion ear height, prolificacy, ear diameter and length, number of grains rows per ear, stem diameter and mass (group II).

The maize genotypes with taller plants may show higher competitive ability. This enables light intercept more efficiently and photosynthetically active energy, due to more leaf area. However, they can meet the need of assimilates to form and maintain more ears per plant, and even cause larger dimensions. These associations have been proven in research conducted with maize hybrids grown in six environments, where ear grain mass and grain yield were increased by taller plants and leaf area (De Souza et al., 2015).

The second canonical pair revealed intergroup correlation of r=0.75. The smaller thousand grains weight (group I) was obtained in ears with higher length, number of grains row per ear and number of grains per row. However, they were observed in less prolific plants and smaller diameter stem. The canonical trends are justified when the ears reveal higher dimensions, when has been properly fertilized. Before that, the number of grains per ear increases and modifies the arrangement of the ear grains and reduces the space available for the expansion of each grain. Therefore, plants with less number of the ears can direct their assimilated to less drains, forming more but lighter grains per ear. The maize productive potential is dynamically dependent to the architecture and leaf area, photosynthesis, pollination and efficient eggs fertilization, number of grains per ear formed,

986
accumulation and expansion of carbohydrates in the endosperm, and grain size (Magalhães and Durães, 2006).

The third canonical pair presented intergroup correlation of r=0.58, where the emphasis is assigned to the grain yield (group I), whereas unfavorable to the increase of diameter and the stem mass. However, it is determined through the plant height, insertion ear height, prolificacy, ear diameter and number of grains per ear row (group II). In the conditions of this study, superior productive potential genotypes were obtained with greater height, prolific and ear diameter which was proportionally inverted to the stem diameter, providing increased in the depth of the plant. The path analysis of grains yield as dependent trait showed that this character was determined through the grains mass and the ear diamensions (Lopes et al., 2007), prolificacy (Carvalho et al., 2001), and insertion ear height (De Souza et al., 2014).

Before identification of contribution of the variance components (REML) evidence the genetic fraction of phenotype expression and before knowing the weight of genetic parameters by genotype x environment interaction, joint list with linear phenotypic, genetics and environmental association are pronounceable among the favourable characters. Also, canonical interrelations were established for the primary yield characters (group I) and the second characters (group II). It can be considered to compose future selection strategies on a maize breeding program to obtain superior genotypes in grain yields.

Materials and Methods

Characterization of experimental conditions

The experiments were conducted in the growing seasons 2013/2014 in four agricultural regions in Rio Grande do Sul, Brazil. The climate for all environments was characterized per Köppen with Cfa subtropical. The informations related to the cultivation environment are shown in Table1.

Experimental design

A randomized block arranged in a factorial design was used, in which 79 maize of hybrids (simple/narrow genetic base) x four cultivation environments assigned in three replicates. The genotypes used in this study are shown in Supplementary Table 1a and 1b.

The experiments were based on direct seeding system, which carried out in the second fortnight of setember of 2013. The basic fertilizer of 400 kg ha⁻¹ NPK (10-20-20) used was, in which 135 kg ha⁻¹ of nitrogenin applied in V₄ and V₅ growth stages (Fancelli and Dourado Neto, 2000). The population density was 80000 plants per hectare. The experimental unit was four spaced lines (0.5 meters between rows) and five meters of length. The weed and insect pest control were done preventively to minimize the biotic effects on results of the experiments.

The characters of interest were measured in the useful area of each experimental unit wich was composed of two centerlines, where 0.5 meters from end of each line was discarded. The characters measured followed to the methodology proposed by Carvalho et al. (2014), and De Souza et al. (2015), such as plant height (PH) in centimeters (cm), insertion ear height (EH) in cm, prolificacy (PRO) in units, ear diameter (ED) in milimeters (mm), ear lenght (EL) in cm, number of grain rows per ear (NRE), number of grains per row (NGR), stem diameter (SD) in mm, stem mass (SM) in grams (g), ear mass (EM) in g, grains weight per ear (GWE) in g, hundred grains weight (HGW) in g, grains yield (GY) in kg ha⁻¹.

The datas obtained was submitted to variance of analysis at 5% of probability to verify the assumptions, subject to the normality test of Shapiro Wilk (1965), and variance homogeneity of Bartlett’s test (Steel et al., 1997). Posteriorly, affected up the estimates of the variance components and genetics parameters (REML) through the MHPRGV method, using the 54 model (Resende, 2007), it was followed the statistical y = Xr + Zg + W1 + e where, yᵢ is the data vector, rᵢ are the repetitions effects (fixed), gᵢ are the genotypic effects (random), i are the genotype x environment interaction effects (random), rᵢ are the residue (random). Estimates that, genotypic variance (σ²G), genotype x environment interaction variance (σ²INT), residual variance (σ²E), phenotypic individual variance (σ²P), heritability with broad sense to the total phenotypic effects (h²P), heritability to the genotypes mean (h²mg), accuracy for the selection of the genotypes (rgg), determinant coefficient to the effects of genotype x environment interaction (C²INT), genotype correlation between performance of the environment (giloc), coefficient of genotypic variation (CVg), coefficient of residual variation (CVe) and a overall average (OA).

A joint analysis of data was conducted, where all the characters were subjected to a linear phenotypic correlation, and the significance was obtained with t test at 1 and 5% of probability (Steel et al., 1997). Similarly, the genetics and environmental correlation was obtained based on bootstrap method, through of 10 thousand simulations, totalizing (N) 948 observations. The phenotypic matrix was submitted to multicolinearity diagnosis through the number of conditions (NC) of matrix (Cruz et al., 2012). Subdivided in primary yield characters (group I) these were EA, GWE, TGW and GY, and secondary characters (group II) which evaluate PH, EH, PRO, ED, EL, NRE, NGR, SD and a SM. The canonical correlation analysis was preceded, when the significance between the groups of characters was obtained x² test (Cruz et al., 2012). The statistical analysis was conducted through the GENES software (Cruz, 2013).

Conclusion

The variance components and genetics parameters (individual REML) identified a contribution of the genetic variation on the genotype x environment interaction, and heritability in a broad sense for the ear diameter, number of grains row and stem diameter. Phenotypic, genetic and environment linear positive trends were presented between the prolificacy as ear diameter and the grains mass per ear with the grain yield. The three canonical pairs were significant with intergroup dependence, in which the grains field favored the plant height, insertion ear height, prolificacy, ear diameter and number of grains per row. The criteria established by this study can be used in quantitative genetics research and maize genetic improvement to increase grain yield.

Acknowledgments

The authors thank capes, CNPq and FAPERGS for their financial support.

References

Relações entre componentes de rendimento e características comportamentais em híbridos de milho em ambiente irrigado e sequeiro. E Biosfera. 10_1144-1145.

