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Abstract 

 

The role of nitrogen in plants under oxygen deficiency is not well understood. Some studies indicate that nitrate reduction can act as 

an alternative electron sink (on proton consumption and NAD(P)+ regeneration) reducing the cytoplasmic acidosis induced by 

anaerobiosis. In this study, we evaluate the role of nitrogen (applied in nutrient solution as either 8mM NO3
-or 8mM NH4

+) in the 

metabolism and physiology of rubber trees (Hevea Brasiliensis) subjected to oxygen deficiency. The experiment lasted 21 days, with 

measurements of gas exchange, biochemical and anatomical analyses taken every 7 days (day 7, 14 and 21). Net photosynthesis, 

stomatal conductance and transpiration rate in stressed plants significantly decreased (around 50%) at 14 days of the treatment 

compared to control plants, regardless the nitrogen source. However, in plants treated with nitrate even under stress photosynthesis 

remained relatively high until the end of the experiment. When exposed to stress, plants treated with nitrate showed a higher 

efficiency of the antioxidant system enzymes (superoxide dismutase and ascorbate peroxidase), so the H2O2 content was higher in 

leaves of plants treated with ammonium and exposed to hypoxia. Moreover, plants grown in nitrate in waterlogged conditions were 

characterized by earlier aerenchyma formation than plants grown with ammonium. Therefore, our results indicate that NO3
- is more 

beneficial than NH4
+ for rubber tree plants metabolism under oxygen deficiency conditions. 
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(PPFD). 

 

 Introduction 

 

Plants are frequently exposed to conditions of excessive soil 

moisture (waterlogging) in which the root system is 

hampered by the low diffusion rate of oxygen (O2) in water 

(Armstrong, 1980). Given the fundamental importance of O2 

in the aerobic metabolism of plants, waterlogging stress can 

strongly affect growth and survival in both agricultural and 

natural ecosystems. Indeed, O2 depletion can negatively 

influence the productivity of many economically important 

species (Irfan et al., 2010). From a metabolic perspective, O2 

deficiency decreases oxidative phosphorylation and, 

consequently, causes a relative increase in ATP production 

by cytosolic glycolysis. O2 limitation also affects the terminal 

acceptor of mitochondrial respiratory chain, resulting in the 

inhibition of energy-demanding processes and the stimulation 

of fermentative pathways for anaerobic ATP production 

(Bailey-Serres and Voesenek, 2008). At the physiological 

level, O2 deficiency in roots affects key functions such as 

nutrient and water uptake. Furthermore, whole-plant 

processes are also affected, including liquid-CO2 

assimilation, stomatal conductance/ transpiration and 

carbohydrate translocation (Kreuzwieser et al., 2004). There 

is also an uncontrolled increase of free radicals in cells. These 

diverse responses to O2 depletion vary according to the 

species and to the severity and duration of stress (Shao et al., 

2008). Plants have developed a complex enzymatic defense 

system as a protective strategy against oxidative damage. Key 

constituents of this system include superoxide dismutase 

(SOD), that catalyzes the conversion of superoxide anion into 

H2O2 and O2, catalase (CAT) and ascorbate peroxidase 

(APX), that can break down H2O2 to H2O and O2 

(Manivannan et al., 2008; Jaleel et al., 2009). Many plants 

also undergo morphological changes in response to low 

oxygen availability such as the production of adventitious 

roots, lenticels and aerenchyma. These adaptations help 

minimize the oxygen deficit, increasing the level of tolerance 

of the plant to water stress (Kawase, 1981). The formation of 

aerenchyma in stress tolerant species can occur in nodes, 

rhizomes, stems, and leaves, although they are mainly 

observed in submerged roots. (Drew, 1997; Jackson and 

Armstrong, 1999; Drew et al., 2000; Gibberd et al., 2001).  

The application of nitrate (NO3
−) - but not ammonium (NH4

+) 

- has been observed to increase the survival of plant species 

subjected O2 deficiency (Allegre et al., 2004; Thomas and 

Sodek, 2005; Horchani et al., 2010). Indeed, comparisons of 

NO3
− and NH4

+ indicate that these nitrogen forms may induce 

distinct metabolic responses under water stress (Escobar et 

al., 2006; Patterson et al., 2010). NO3
− appears to be reduce 

to nitrite (NO2
−) through nitrate reductase (NR) under O2 

deficiency (Botrel et al. 1996). Nevertheless, it is difficult to 

provide a convincing explanation for the beneficial effect of 

NO3
− during hypoxia based solely on its direct effects: NO3

− 

reduction by NR and NAD(P)+ regeneration by NR 
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(Stoimenova et al., 2003; Libourel et al., 2006). This 

observation suggests that NO3
− effects the regulation of 

cytoplasmic pH during O2 deficiency, and by extrapolation, 

tolerance to this stress might be mediated by NO2
− or by a 

compound derived from it (Libourel et al. 2006). 

Nevertheless, the effect of hypoxia on plant metabolism is 

still not completely understood (Sousa and Sodek 2002a; 

Bailey-Serres and Voesenek, 2008). The objective of this 

study was to identify and quantify the physiological (gas 

exchanges), metabolic (enzymatic activity) and anatomical 

changes (aerenchyma development)  in the rubber tree plants 

(Hevea Brasiliensis Müll.Arg.) subjected to waterlogging and 

treated with two forms of exogenous nitrogen (NO3
− or 

NH4
+). Specifically, we studied the mechanisms of tolerance 

to hypoxia by examining changes in gas exchange, the 

antioxidant system of leaves and anatomy of roots. 

  

Results 

 

Gas exchange 

 

Net CO2 assimilation rate in plants cultivated in solution with 

no nitrogen exhibited maximum values of 2.5 µmol CO2 m
-

2.s-1 in normal levels of oxygen or hypoxia. Plants treated 

with nitrate exhibited higher net assimilation rate under both 

normoxia and hypoxia. Under normoxia, photosynthesis 

reached 8.2 µmol CO2 m-2.s-1 at 21 days, whereas the 

assimilation peak occurred at 7 days reaching 9.2 µmol CO2 

m-2.s-1 under hypoxia. There was a small reduction in net 

assimilation rate to 5.5 µmol CO2 m
-2.s-1 after 14 and 21 days 

under hypoxia. In plants treated with ammonium, the results 

were much lower, waterlogging caused an increase in net 

CO2 assimilation rate, reaching 4.5 µmol CO2 m-2.s-1 at 7 

days. However, a large reduction in this parameter was 

observed at 14 days (1.5 µmol CO2 m
-2.s-1) and too at 21 days 

(1.3 µmol CO2 m-2.s-1). (Fig. 1). Stomatal conductance and 

transpiration were similar throughout experiment period. 

Flooded plants cultivated under hypoxia had higher values 

than the control for these two parameters at 7 days. However, 

at 14 and 21 days, plants under stress were affected 

negatively by the deficiency of oxygen (Fig. 2). In the 

presence of ammonium under normal oxygen conditions, 

stomatal conductance reached a maximum value of 0.1 mol 

H2O m-2.s-1. The same value was observed at 7 days for the 

waterlogged root systems - this parameter decreasing to 0.01 

(14 days) and 0.006 (21 days). In both hypoxic and normal 

oxygen conditions, plants treated with nitrate had 

significantly higher stomatal conductance in comparison to 

plants treated with ammonium or without addition of 

exogenous nitrogen (Fig. 2a). At 14 and 21 days under 

hypoxia, there was a decrease in transpiration regardless the 

nitrogen source. However, for this parameter results found in 

plants treated with nitrate were higher than other treatments 

even under stress conditions (Fig. 2b). 

 

Antioxidant metabolism 

 

Plants without the addition of exogenous nitrogen exhibited a 

lower activity of superoxide dismutase enzyme (SOD) when 

compared to those ones treated with nitrate or ammonium 

(Fig. 3a). This difference was maintained throughout the 

experimental period regardless of oxygen availability. 

Intermediate values for SOD activity were found in plants 

treated with ammonium, with waterlogging causing an 

average increase of 4.5 % in enzyme activity. The highest  

 
Fig 1. Effect of oxygen availability and nitrogen source on 

the net photosynthesis (Pn) of rubber tree seedlings. Capital 

letters compare the nitrogen sources at each sampling time 

within each oxygen condition (control and hypoxia); 

lowercase compare oxygen availability in each sampling time 

within each nitrogen source, and lowercase followed by an 

apostrophe compare the sampling times within each oxygen 

condition (control and hypoxia) for each nitrogen source. 

Different letters indicate significant differences with 0.05 

probability. 

 

SOD activity was observed in flooded plants cultivated with 

nitrate, with SOD activity reaching the maximum value 

(422.0) 21 days after waterlogging. A significant increase in 

ascorbate peroxidase (APX) activity was observed in all 

waterlogged treatments in comparison to their respective 

controls. In the ammonium treatment under hypoxia, it was 

observed a moderate increase in relation to the control. 

Within the nitrate treatment, the low oxygen availability led 

to an intense increase in APX activity reaching 143 at 7 days, 

92 at 14 days and 90 at 21 days (Fig. 3b). Consistent with 

results previously described, the leaf H2O2 content was higher 

in plants exposed to hypoxia and in plants treated with 

ammonium (Fig. 3c). 

On average, catalase activity (Fig. 3d) was 100-fold lower in 

comparison to SOD and APX. Interactions between 

ammonium and hypoxia (as well as between nitrate and 

hypoxia) resulted in a significant increase in CAT activity 

only at 21 days. 

 

Aerenchyma formation 

 

Control plants (not subjected to waterlogging) did not form 

aerenchyma. The roots of hypoxic plants treated with 

ammonium (Fig. 4) showed aerenchyma only by 21days. The 

most interesting result was that, hypoxic plants cultivated 

with nitrate showed signs of aerenchyma formation by day 14 

and, by 21 days, a more pronounced development of this 

morphological adaptation was observed (Fig. 5). 
 

Discussion 

 

Our investigation of gas exchange, antioxidant system 

enzymes and root anatomy in rubber tree seedlings subjected 

to O2 deficiency clearly demonstrated that addition of both 

nitrate and ammonium considerably modified the metabolic 

effects of root hypoxia. As an energy-consuming process, 

nitrogen assimilation has important implications for the 

energy state of vegetal cells (Bloom and Sukrapanna, 1992).  
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Fig 2. Effect of oxygen availability and nitrogen source in the (gs) stomatal conductance (a) and (E) transpiration (b) of rubber tree 

seedlings. Capital letters compare the nitrogen sources at each sampling time within each oxygen condition (control and hypoxia); 

lowercase compare oxygen availability in each sampling time within each nitrogen source, and lowercase followed by an apostrophe 

compare the sampling times within each oxygen condition (control and hypoxia) for each nitrogen source. Different letters indicate 

significant differences with 0.05 probability. 

 

 
Fig 3. Effect of oxygen availability and of the nitrogen source in the activity of the enzymes superoxide dismutase a, peroxidase 

ascorbate b, H2O2 content c and catalase d, of rubber tree seedlings. Capital letters compare the nitrogen sources at each sampling 

time within each oxygen condition (control and hypoxia); lowercase compare oxygen availability in each sampling time within each 

nitrogen source, and lowercase followed by an apostrophe compare the sampling times within each oxygen condition (control and 

hypoxia) for each nitrogen source. Different letters indicate significant differences with 0.05 probability. 
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Moreover, the moderating influence of nitrogen may become 

more important in conditions of O2 deficiency such as 

waterlogging, when there is a decrease in the ATP/ADP 

relation due to the low yield of fermentative processes 

(Bailey-Serres and Voesenek, 2008). It has been suggested 

that the conversion of NO3
- in NO2

- by nitrate reductase in 

plants subjected to NO3
- could regenerate NAD (P)+ and 

consume protons, providing an alternative to fermentation 

during hypoxia (Roberts et al., 1985). However, some authors 

have raised questions about this hypothesis (Stoimenova et 

al., 2003; Libourel et al., 2006). Specifically, Stoimenova et 

al. (2007) demonstrated that NO2
- may play a role as an 

alternative receptor of electrons, replacing O2 in the 

respiratory chain and oxidizing NAD(P)H for ATP synthesis. 

Thus, NO2
- synthesis from NO3

- might play an important role 

in the maintenance of mitochondrial functionality during O2 

deficiency (Gupta & Igamberdiev, 2011). Plants cultivated 

with ammonium do not reduce nitrate to nitrite or reduce 

nitrite to ammonium. The lack of these processes is 

detrimental because equivalent reducers are not recycled, 

especially in plants under hypoxia. Furthermore, the first 

reaction that takes place when ammonium is absorbed is 

catalyzed by glutamine synthetase, which depends on ATP. 

Since this enzyme has decreased activity in roots under O2 

deficiency, the ratio of ATP/ADP is reduced (Limami et al., 

2008). Lower glutamine synthetase activity may lead to NH4
+ 

accumulation, high levels of which have deleterious effects 

on vegetal cell (Givan, 1979). In the present study, we 

observed in plants treated with ammonium a large reduction 

in stomatal conductance and transpiration. When this occurs, 

there is a decrease in absorption of water by the roots and a 

lower rate of CO2 diffusion into the plant. Consequently, 

photosynthesis drops because Rubisco is affected by the 

reduction of leaf hydric potential or lack of substrate (CO2). 

However, plants subjected to nitrate exhibited assimilation 

rate over 5 µmol CO2 m
-2.s-1 even in hypoxic conditions (see 

Fig. 1). Unlike ammonium, nitrate is transported through the 

xylem and, therefore, nitrate assimilation can occur in roots 

and leaves. Thus, the reactions, which convert nitrate into 

amino acids, function as an electron sink, preventing cell 

super reduction that occurs due to accumulation of ATP and 

NADPH under hypoxic conditions. Excessive reducing 

power and surfeit of ATP leads to cell super reduction, 

triggering the production of reactive oxygen species (ROS) 

which are highly detrimental to cell structures (Giannakoula 

et al., 2010). Stress caused by low oxygen availability leads 

to a higher SOD activity, which determines O2
– and H2O2 

concentration - key defense mechanisms necessary to prevent 

the formation of OH- radicals (Jaleel et al., 2007). Among 

enzymes involved in ROS deletion, SOD is considered a key 

enzyme because it is the first line of defense against oxidative 

stress (Pompeu et al., 2008). APX as well as other 

peroxidases, unlike CAT, have high affinity for H2O2, 

metabolizing it even in low concentrations (Gechev et al., 

2006). Several APX isoforms are widely distributed in nearly 

all cell organelles, and abiotic stresses frequently induce 

increases in both gene expression and APX activity to 

compensate for deficiencies in CAT activity. Increased 

enzyme activity (such as SOD and APX) associated with 

ROS deletion is thus related with increased stress tolerance in 

plants exposed to adverse environmental conditions 

(Giannakoula et al., 2010). Rubber plant seedlings under 

hypoxia exhibited higher activity of anti-oxidant system 

enzymes, especially in plants treated with nitrate. The 

maintenance of photosynthetic rate and the lowest content of 

peroxide due to the efficiency of the antioxidant system 

proves the positive influence of nitrate when we subject these  

 
 

Fig 4. Effect of oxygen availability and nitrogen source in the 

aerenchyma formation in cross-sectional lateral roots of 

rubber tree seedlings grown with 8 mM Ammonium and 

subjected to two oxygen availability conditions: without 

waterlogging (A, B and C) and waterlogging (D, E and F), D, 

E and F corresponds 7, 14 and 21 days after the induction of 

waterlogging. The bar (_____) corresponds to 100 micrometers. 

The arrow to point aerenchyma formation. 

 

 

 
 

Fig 5.  Effect of oxygen availability and nitrogen source  in 

the aerenchyma formation in cross-sectional lateral roots of 

rubber tree seedlings grown with 8 mM Nitrate and subjected 

to two oxygen availability conditions: without waterlogging 

(A, B and C) and, waterlogging (D, E and F), D, E and F 

corresponds 7, 14 and 21 days after the induction of 

waterlogging. The bar (_____) corresponds to 100 micrometers. 

The arrow to point aerenchyma formation. 

 

 

plants to flooding. This strongly suggests that this nitrogen 

source positively affects the removal of reactive-oxygen 

species (ROS) preventing H2O2 accumulation. In our study, 

higher SOD and APX activity and lower content of H2O2 was 

observed in hypoxic plants treated with nitrate. The efficient 

action of these enzymes is an extremely important component 

of physiological tolerance, since their actions prevent free 

radicals from damaging cells and membranes organelles such 

as mitochondria and chloroplasts. Second Allen et al. (1997), 

increases in anti-oxidant enzyme expression may increase 

tolerance to oxidative stress, which increases in low O2 

availability conditions. In low oxygen availability conditions 

nitrate application reduces the formation of reactive oxygen 

species because NR consumes NADH reducing power, 

preventing that accumulates and causes over cellular 

reduction. Furthermore, nitrate improves the efficiency of 

enzymes SOD and APX controlling the action of free radicals 

(H2O2) and oxidative stress. Therefore, it is believes that less 
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damage occurs in the membranes of organelles and cells 

leads to the maintenance of metabolic processes, as 

demonstrated by photosynthesis, culminating in cell 

homeostasis and a normal plant development. Another 

important point is that under low O2 concentrations leads to 

the formation of aerenchyma in tolerant plant species. The 

large number of studies have shown the beneficial effects of 

aerenchyma by providing a pathway for the diffusion of gases 

to the submerged organs (Loureiro et al., 1995), and rubber 

tree seedlings growing in solution with nitrate, developed 

aerenchyma, an adaptation associated with low availability of 

O2, earlier than plants growing in ammonium. Second 

Thomas and Sodek, (2005), the addition of nitrate in soybean 

plants apparently form a more compact aerenchyma, with 

more cells and intercellular spaces. Therefore, nitrate 

positively affects the natural plasticity of plant rubber trees to 

survive in areas where periodic flooding can happen - a 

common occurrence in native habitats of this species.  

 

 Materials and Methods 

 

 Plant cultivation and experimental conditions 

 

Rubber trees were grown from seed in a greenhouse 

(21°14’S, 45°00’W, altitude 918 m). Environmental 

conditions inside the greenhouse were: mean air temperature 

between 14 °C (minimum) and 36 °C (maximum) with an 

average temperature of 25 °C; average air relative humidity 

around 75%; maximum photosynthetic photon flux density 

(PPFD) of 1500 mmol m−2. s−1 and 12h photoperiod. Seeds 

(cultivar RRIμ600) previously selected for size and weight 

were germinated in pots (5L) filled with sand.  Eight days 

after germination, seedlings of similar height and 

morphological characteristics were transplanted to pots (2L) 

filled with nutrient solution (Bolle-Jones 1957). The solution 

volume was refilled daily. The pH of the solution was 

adjusted daily to 5.5 ± 0.5 and solutions were completely 

replaced at weekly intervals. 

 

Treatments and harvesting 

 

 When plants were 12 months-old they were divided into six 

treatments consisting of  three nitrogen concentrations in 

nutrient solution (0 mM nitrogen, 8 mM nitrate (KNO3) and 8 

mM ammonium ((NH4)2SO4) and two conditions of oxygen 

availability (control plants kept under normoxia and flooded 

plants kept under root hypoxia). Vegetal material (leaf and 

root) were sampled seven (7), fourteen (14) and twenty-one 

(21) days after the induction of treatments. Sampling was 

carried out simultaneously to allow accurate comparisons of 

the antioxidant metabolism enzymes activity (SOD, CAT, 

APX) and anatomical changes of the root system over time. 

 

Gas exchange measurements  

 

Gas exchange measurements were performed in the third 

fully expanded leaf was monitored throughout the 

experiment. Every seven days for three weeks, gas exchange 

was evaluated at 09:00 or 10:00 in the central leaflet. Net 

CO2 assimilation rate (PN) and stomatal conductance (gS) 

were regularly evaluated using a portable gas exchange 

system (IRGA LI-6400XT, LI-COR, Lincoln, NE, USA).  

 

 Enzyme extraction, activity assays and H2O2 content 

 

Enzyme extract was obtained with liquid nitrogen 

mortification of 0.3 g leaf blades, to which was added 1.5 mL 

of extraction buffer containing 375 µL potassium phosphate 

buffer 400 mM (pH 7.8), 15 µL EDTA 10 mM, ascorbic acid 

200 mM, 22 mg PVPP and 1035 µL water. The extract was 

centrifuged at 13000g per 10 min at 4 ºC. Supernatant was 

used to analyze the superoxide dismutase (SOD), catalases 

(CAT) and ascorbate peroxidases (APX) enzymes (Biemelt et 

al., 1998). SOD activity (EC 1.15.1.1) was evaluated by the 

ability of the enzyme to inhibit photo-reduction of nitroblue 

tetrazolium (NBT), as proposed by Giannopolitis and Ries 

(1977). CAT (EC 1.11.1.6) was evaluated according to Havir 

and McHale (1987) and APX activity (EC 1.11.1.11) was 

determined according Nakano and Asada (1981). Lastly, 

H2O2 content was determined according Velikova et al. 

(2000). 

 

 Anatomical measurements 

 

Fragments of secondary roots were fixed with FAA 50 

(Johansen, 1940) and stored in 70% ethanol. Material was 

sectioned on microtome; cross-sections were made on the 

third centimeter of pilifera zone. Cross-sections were cleared, 

rinsed and subsequently stained with safranin 7.5: Astra blue 

2.5 (Bukatsch, 1972). Semi-permanent slides were mounted 

with glycerin and photomicrographs obtained in optical 

microscope coupled with a digital camera.  

 

 Statistical analysis and experimental design 

 

The experiments were arranged in a completely randomized 

design (CRD) in a factorial arrangement (3x2x3). The 

experiment had six treatments and three time points (7, 14 

and 21 days) for stress measurements with four replicates, 

totaling 72 plants. Data were analyzed using analysis of 

variance (ANOVA), and the means were compared using the 

Scott-Knott test (p ≤ 0.05). 

 

Conclusion 

 

Lastly based on our results, NO3
- is clearly more beneficial 

than NH4
+ for the metabolism of rubber trees under hypoxia. 

However, a definitive explanation for the positive effect of 

NO3
- on plant growth during O2 deficiency is not known yet. 
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