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Abstract 

 

A considerable portion of Canada’s landmass is covered by grassland ecosystems. Insight into the grassland spatial heterogeneity will 

not only contribute to better understanding of the scale dependent ecological processes but will also help in management and 

monitoring. Leaf area index (LAI) is a key structural attribute of grassland that reflects primary production. It is well-known that 

topography controls grassland productivity and heterogeneity but little is known which topographic index correlates best with LAI at 

multiple scales. In this study, we have used multifractal and joint multifractal techniques to investigate how leaf area index in a 

semiarid grassland is linked with topographic factors at multiple scales. The topographic indices assessed in this study were wetness 

index, upslope length, and relative elevation. Our results show that field LAI is significantly correlated (P < 0.01) with the studied 

topographic factors and the effect of topography on grassland primary productivity is better explained by wetness index than upslope 

length or relative elevation. LAI, wetness index, and upslope length are multifractally distributed whereas distribution of relative 

elevation is monofractal. Joint multifractal analysis shows that the relationships between LAI and topographical factors are highly 

scale dependent, however, LAI is weakly correlated to relative elevation. Overall, this study suggests that the effect of topography on 

bioproductivity should be considered at multiple scales and multifractal and joint multifractal techniques are particularly useful in 

elucidating multi-scale spatial patterns of grassland ecosystems. 

 

Keywords: Grassland, joint multifractal analysis, multifractal analysis, scale . 

Abbreviation and symbols: D, single fractal dimension; Dq, the generalized fractal dimension of the UM model at the moment 

order of q; f(), the multifractal spectrum; f(), the joint multifractal spectrum; i, k, counting indices; L, length of the spatial; 

domain (e.g. length of the transect); LAI, leaf area index; N(), the number of segments of size   unit; P, probability level; Pi() and 

Ri(), the probability of the measures P and R at the ith segment of the size   units; q, t, moment orders; ′, the multifractality index 

in the UM model; , local scaling indices; , cell or segment size; , partition function; (q), the mass scaling function.      

 

 

Introduction 

  

Approximately 5% of Canada’s land area is covered by the 

Prairie Ecozone and the largest percentage of Canada’s 

Prairie Ecozone is located in Saskatchewan (Gauthier and 

Wiken, 2003). The composition, productivity, and diversity 

of North American grasslands are considerably hetero- 

geneous (Ludwig and Tongway 1995). Information on 

grassland spatial heterogeneity is important for management, 

sampling regimes, and biodiversity monitoring. Leaf area has 

been found to be correlated with productivity in a variety of 

ecosystems, including grasslands (Gholz, 1982; Waring, 

1983; Webb et al., 1983). It is a key structural characteristic 

of grassland ecosystems because of the role of green leaves in 
controlling many biological and physical processes in plants. 

Topographic factors such as wetness index, upslope length 

and relative elevation are supposed to play a key role in 

regulating the leaf area index in grassland. In semiarid 

regions, water is the limiting factor for plants. Topography is 

one of the important factors controlling rainfall redistribution 

over landscape, directly and indirectly affecting soil fertility. 

Furthermore, it also affects the amount of solar radiation 

received by plants, thus affecting photosynthesis. The 

importance of topography in grassland productivity has been 

established in the literature, and yet the search for a 

topographic index that best represents the integrated impacts 

of topography is unabated. Grassland spatial patterns are 

scale dependent and large-scale patterns are mainly regulated 

by topography or climate conditions (Lobo et al., 1998; Nellis 

and Briggs 1989). However, these attributes and their 

relationships are yet to be assessed at multiple scales. 

Scaling, the extrapolation or translation of information across 

multiple scales, can be particularly challenging due to 

landscape variability and nonlinearity (Wu et al., 2000). 

Studies investigating multi-scale variability of 

bioproductivity were limited for a long time because of the 

complexity in analysis and lack of spatial statistical 

techniques. Spatial statistics have only been used in 
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landscape ecology since late 1980s (Legendre and Fortin, 

1989; Rossi et al., 1992). The most frequently used 

techniques to characterize spatial variability are geostatistics 

(Sarmadian et al., 2010), spectral analysis (Perfect and Caron, 

2002), wavelet analysis (He et al., 2007), multifractal 

analysis (Kravchenko et al., 1999) etc. Although geostatistics 

can assess spatial dependency in a simple way, for extreme or 

non-normal values it is not particularly suitable (Wang et al., 

2009). On the other hand, wavelet analysis provides location 

dependent spatial information but it is not a useful method to 

assess highly skewed data. Furthermore, geostatistics, 

spectral, and wavelet methods only use variance and 

covariance. Multifractal analysis utilizes a range of statistical 

moments thus offers a closer look at the variability features 

that are obvious when multiple moments are examined but 

inconspicuous with the second moment (Kravchenko et al., 

1999).  Multifractal formalism, first proposed by 

Mandelbrot (1982), is suitable for variables with self-similar 

distribution on a spatial domain (Kravchenko et al., 2000). 

Due to its intrinsic nature, multifractal analysis reveals more 

information about data heterogeneity than other spatial 

techniques. For instance, minute differences in the locations 

of high data values in a map which is not apparent in a 

semivariogram can be distinguished in multifractal spectra of 

two data sets (Kravchenko et al., 1999). In general, 

multifractal attributes have different probability distribution 

and spatial distribution than monofractal ones and this 

difference is imperative for simulation and mapping as it 

allows us to assess their underlying processes (Wang et al., 

2009). Since early 1990s, power-law relationships and fractal 

theory have been successfully used in many ecological 

studies (Sugihara and May, 1990; Harte et al., 1999). 

Multifractal analysis has been found to be particularly useful 

for examining multi-scale spatial heterogeneity of rainfall 

(Olsson and Niemczynowicz, 1996), soil properties 

(Kravchenko et al., 1999), crop yield (Zeleke and Si, 2004), 

vegetation patterns (Scheuring and Reidi, 1994). However, it 

would also be interesting to understand the associations 

among the variables across various scales and joint 

multifractal technique is highly suitable for illustrating the 

variability and scaling in the combined distribution of two 

variables on a geometric support (Zeleke and Si, 2006). This 

approach has been successfully used to demonstrate the 

relationships between topographic indices and crop yield 

(Kravchenko et al., 2000; Zeleke and Si, 2004). The aim of 

this study was to analyze the multi-scale spatial heterogeneity 

of LAI and topographic factors and their relationships using 

multifractal and joint multifractal approaches.  
 

Materials and methods 

 

Study site 

 

This study was carried out in the Grasslands National Park 

(GNP), Saskatchewan, Canada (490 15’ N, 1070 09’ W). 

GNP, established in 1984, is a mixed grass prairie ecosystem. 

This area has a semi-arid climate, with an annual 

precipitation of approximately 340 mm, mostly accruing as 

rainfall in the growing season (May–September). The 

growing days in this region are short (170 days on average) 

and the mean annual temperature is 3.40 C. The growing 

season is often further shortened by the lack of moisture 

(Csillag et al., 2001). Grassland National Park mostly 

consists of upland, slopeland, and valley grasslands. Upland 

grasslands dominate the mixed grassland ecosystem in North 

America, thus, sampling site was located in an upland native 

grassland. The site was selected as it is located along a 

typical rolling terrain with a soil moisture ascent. The soil in 

this region is a nutrient poor, shallow, clay-loam brown soil, 

but a wide variety of soil types (borrolls, natric, orthents, 

psamments and aquic) are present (Csillag et al., 2001). 

However, needle-and-thread grass (Stipa comata Trin. & 

Rupr.), blue grama grass (Bouteloua gracilis (HBK) Lang. ex 

Steud.), June grass (Koeleria macrantha (Ledeb) J.A. 

Schultes f.), and western wheatgrass (Agropyron smithii 

Rydb.) are the dominant grass species (He et al., 2007). 

 

Field data collection 

 

Field data were collected at 128 quadrats (each 50 x 50 cm2) 

located at 3 m intervals along a 381 m transect. The LAI, 

relative elevation, wetness index, upslope length, and 

distance were recorded at each quadrat. LAI (the projected 

area of vegetative parts normalized by the subtending ground 

area) was measured using a LiCor LAI-2000 Plant Canopy 

Analyzer (LI-COR Inc., Lincoln, Nebraska, USA). The LAI-

2000 was shaded when measurements were being taken to 

minimise the impact of glazing from direct sunshine. At each 

plot, LAI is the average of four automatically calculated LAI 

values; each was the comparison result of one above-canopy 

reading, followed by 10 below-canopy readings within two 

minutes to avoid atmospheric variation. A laser theodolite 

(ATT Metrology Services, Inc., California, USA) was used to 

determine relative elevation, angle, and distance. These 

topographic measurements allow for accurate calculation of 

slope percentage and upslope length at any point along 

transects.  The topographical attributes used in this paper are 

relative elevation, upslope length, and wetness index (WI). 

Relative elevation was defined as the distance a point sits 

above or below the elevation of a reference point. Upslope 

length was estimated as the distance from the measurement 

point in the landscape to the highest relative elevation point 

along the slope (Si and Farrell 2004). The wetness index was 

calculated as the natural logarithm of the quotient of upslope 

length and local slope at a point. 

 

Overview of multifractal and joint multifractal analyses 

 

Multifractal technique can be used to characterize the scaling 

property of a variable measured along a transect as a mass 

distribution of a statistical measure on a spatial domain of the 

studied field (Zeleke and Si, 2004). To do this, it divides the 

transect into a number of self-similar segments. It identifies 

the differences among the subsets by using a wide range of 

statistical moments (Zeleke and Si, 2006). A great advantage 

of this technique is that it gives a much deep insight at all 

scales without assuming any homogeneity in the datasets or 

any improvised parameterization (Schertzer and Lovejoy, 

1997).  

The local scaling index (local variability) (q) and 

multifractal spectrum, f() can be determined as                             
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where N() is the length of the geometric support and P is the 

probability function. 
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The partition function of moment order q can be estimated as  
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where  is the scaling region i.e. the segments that follow 

power law. It should be noted that the variable q determines 

the sensitivity of the equations. The mass or correlation 

exponent function is related to the singularity strength. 

The multifractal spectrum can be defined as (Chhabra and 

Jensen, 1989)                   

)()(.)( qqqf                (4) 

The behaviour of a multifractal spectrum can be explained by 

employing a set of exponents called the generalized fractal 

dimensions, Dq. It is also known as Re´nyi dimensions and 

can be calculated as  
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The Dq value at q = 0 is known as the capacity dimension or 

the box counting dimension of the geometric support of the 

measure. Similarly, the Dq value at q = 1, D1, is called the 

information dimension as it provides information about the 

degree of variability in the distribution of a statistical 

measure (Zeleke and Si, 2004). However, it should be noted 

that from Eq. 5, D1 is undetermined as the denominator 

becomes zero. Therefore, l’Hopitals rule is used to calculate 

D1 (Kravchenko et al., 1999; Zeleke and Si, 2004).  
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The Dq value at q = 2 (D2), is referred to as the correlation 

dimension and is mathematically related to the correlation 

function and measures the mean distribution density of the 

statistical measure. Schertzer and Lovejoy (1987) formulated 

a universal multifractal model by making certain reasonable 

assumptions about the mechanisms generating multifractals. 

However, the critical assumption was that the underlying 

generator is a random variable with an exponentiated 

extremal Lévy distribution. The UM model, using a small 

number of relevant parameters, simulates the empirical 

moment scaling function Eq. (2) of a cascade process 

(Schertzer and Lovejoy 1987). Assuming conservation of the 

mean value, the UM model illustrates the τ(q) function as  
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where '  is the extent of multifractality, also known as the 

Lévy index. The values of '  range between 0 and 2 

indicating the monofractal and log-normal cases respectively. 

In other words, it shows how far the variable is from a 

monofractal type of scaling. Here C1 indicates the 

codimension (i.e., C1 = d−D; d is the dimension of the 

observation space and D is the fractal dimension) of values 

less than mean (moment 1) of the variable. Codimension 

demonstrates the sparseness of the values. Multifractal theory 

analyzes the distribution of a single variable (e.g. leaf area 

index or topographic factors) within or along its geometric 

support of the studied field. However, it is also intriguing to 

understand the joint spatial distribution of two or more 

measures. Joint Multifractal technique is an extension of 

multifractal approach for determining multi-scale spatial 

relationships between of two more variables. In the 

multifractal analysis for a single variable, the length of the 

transect is divided into number of smaller segments of size  
and define the probability of the measure in the ith segment 

of the first variable as Pi()
 and the second variable as 

Ri().The local singularity strengths corresponding to these 

variables can be determined as Meneveau et al. (1990).   
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where α and β are the local singularity strengths or Hölder 

exponents corresponding to Pi(ε) and Ri(ε), respectively. 

Now the joint distributions of α and β, and the dimensions of 

the set resulting from the intersection of segments with iso-α 

and iso-β values are needed for identifying the scaling 

property of one variable with respect to the other. If we let 

Nε(α,β)dαdβ denote the number of segments of size ε with α 

values in the range α±dα and β values in the range β±dβ, then 

the dimension f(α,β) of the set resulting from the intersection 

of segments with iso-α and iso-β values, can be determined as 

(Meneveau et al., 1990). 
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 f(α,β) is therefore the multifractal spectra of the joint 

distributions of the two variables considered. A direct method 

can be used for obtaining f(α,β) using the method of μ-

weighted averaging (Chhabra et al., 1989; Meneveau et al., 

1990). Extending the single multifractal analyses theory to 

the joint distributions of two variables, the partition function 

(the normalized μ-measures) for the joint distributions of 

Pi(ε) and Ri(ε), weighted by the real numbers q1 and q2 can 

be obtained by 

  


)(

1 )(.)(

)(.)(
),,(

 




N
j

t
jR

q
jP

t
iR

q
iP

tqi            (10) 

                                                      

The average value of α = ln[Pi(ε)]/ln[ε/L] with respect to the 

μ-measures is calculated by 
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whereas the average value of  = ln[Ri()]/ln(/L) with 

respect to this µ measures is determined by 
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Thus, the dimension (i.e., f(α,β)) of the set on which α(q,t) 

and β(q,t) are the mean local exponents of both measures is 

given by 
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If q or t is set to zero, the joint partition function explained in 

Eq. 10 reduces to the partition function of a single measure, 

and therefore the joint multifractal spectrum defined by Eq. 

13 becomes a single measure spectrum. However, if both q 

and t are set to zero, the maximum f(,ß) is attained,  which is  
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   Table 1. Statistics of biophysical property LAI and topographic factors obtained at 128 locations along the sampling transect 

Variable Minimum Maximum Mean  Median SD## R2 #** 

Leaf area index (LAI) 0.2 2.42 1.09 1.035 0.47  
Wetness Index 0.83 10.27 4.48 0.99 1.84 0.37 

Relative elevation (m) 0 3.93 1.12 0.76 0.95 0.22 

Upslope length (m) 0 75 28.43 19.5 18.93 0.33 

       ## Standard deviation, # Coefficient of determination between LAI and topographic factors, ** Significant at P<0.001 

 

      Table 2. Scaling nature of the variables studied by calculating selected parameters 

Variable D0 D1 D2 SSR max- min f(max)-f(min) 

Leaf area index 1.00 0.978 0.959 350.847 (SS) 0.573 0.35 

Wetness index 1.00 0.978 0.976 370.685 (SS) 0.581 0.35 

Upslope length (m) 1.00 0.943 0.913 1.327x103 (SS) 0.924 0.061  

Relative elevation (m) 1.00 0.999 0.997 3.277 (NS) 0.081  0.228 

D0- Capacity dimension, D1- information dimension, D2- correlation dimension , SSR- sum of square of residuals between simulated 

monofractal scaling and the observed data, max - min  - difference between the maximum (  at q= 10) and the minimum ( at q = -

10) local fractal dimensions coarse HÖlder exponents,NS- non-significant difference (P<0.001) , SS- statistically significant 

difference (P<0.001) 

 

equal to the box dimension of the geometric support of the 

measures. Thus, different pairs of α and β are scanned by 

varying the parameters q and t. Because high q or t magnifies 

large values and negative q or t magnifies small values, by 

selecting different values of q or t, we can examine the 

distribution of high or low values (different intensity levels) 

of one variable with respect to different intensity levels of the 

other variable. Pearson correlation analysis was used to 

quantitatively illustrate the variation of the scaling exponents 

of one variable with respect to another variable across similar 

moment orders. Because f(α,β) represents the frequency of  

the occurrence of a certain value of α and a certain value of β, 

high values of f(α,β) signify a strong association between the 

value of α and the value of β. By permuting q and t, we can 

examine the association of similar values (highs vs. highs or 

lows vs. lows) of α and β as well as dissimilar values (highs 

vs. lows) of α and β.      Analyses were done using programs 

written in Mathcad 14 (Parametric Technology Corporation, 

Cambridge, MA).  

 

Results 

 

Single scale statistical analysis 

 

Three main depressions were found at 87, 210, and 360 m 

and a small depression centred at 270 m along the transect 

(Fig 1). A coarse trend can be seen in the distribution of LAI, 

whereas, the upslope length and wetness index show a similar 

trend. LAI and topographic factors exhibit large values in the 

depressions and small values on the knolls. Thus, spatial 

variations in LAI and topography indices are evidently non-

stationary, showing localized features and trends along the 

transect. LAI is significantly correlated with the topographic 

parameters, viz. relative elevation, upslope length, wetness 

index (Table 1). The strongest correlation was found between 

LAI and the wetness index (R2 = 0.37, P < 0.001). 

 

Multifractal analysis                                                                                                                                                  

 

The distribution of a statistical measure is considered as 

fractal (mono- or multi-fractal) when the moments obey 

power laws (Evertsz and Mandelbrot, 1992). All the 

attributes tested here followed power laws (Fig 2). The 

scaling properties can be assessed further by determining if it 

is simple (monofractal) or multiple (multifractal) scaling 

types. Sum of square difference of the residuals (SSR) and 

certain indicator parameters were calculated from the Chi-

square goodness-of-fit test and generalized dimension 

function, Dq (Eq. 7) respectively (Table 2). For a distribution 

with a simple scaling (monofractal tendency), values of D1 

and D2 become similar to the capacity dimension, D0 (D0 = 1 

for a one-dimensional spatial series). When the distribution 

shows a tendency of multifractal type of scaling, we will see 

D0>D1> D2. The values of D0, D1 and D2 for all the studied 

parameters possess this property. The value of D1 is also an 

excellent indicator of the degree of variability in spatial 

distribution of a measure. The closer the D1 value to the 

capacity dimension (D0), the more homogeneous is the 

distribution of the measure (Zeleke and Si, 2004). Thus, the 

spatial distribution of upslope length is more homogenous 

than those of LAI, wetness index and relative elevation. SSR 

values of LAI, wetness index and upslope length show a 

significant (P < 0.001) deviation from the simulated 

monofractal type scaling, whereas the SSR of relative 

elevation is insignificant and small. The slope of the τ(q) 

curves for q<0 were different from that of q>0 for LAI, 

wetness index and upslope length which suggests low and 

high density regions of the variable scale differently (Fig. 3a). 

In comparison with the simulated single scaling distribution, 

the degree of variability increases in the order of upslope 

length, wetness index and LAI. LAI and wetness index 

appeared on the same line suggesting their similar 

distribution patterns. The τ(q) curve of relative elevation is a 

straight line and overlaps the simulated monofractal type 

distribution indicating a single scaling property. This is in 

agreement with observations made from the generalized 

dimension analysis and the SSR values. There is a clear 

difference among the variables in terms of Dq values at all 

studied moment orders indicating highly dissimilar scaling 

properties of the variables (Fig. 3b). Except for certain q 

values (q = -10 to 0), a distinct similarity between LAI and 

wetness index can be seen here. The multifractality of the 

variables can also be evaluated by the relationship between 

overall fractal dimensionality (Dq) and q moment values. The 

Dq of a multifractal parameter changes with q whereas the 

Dq of a monofractal parameter remains unchanged. All the 

variables, except relative elevation, show a significant change 

which reconfirms their multifractal nature. Multifractal 

spectrum not only shows the resemblance and/or dissimilarity 

among the scaling properties of the statistical measures but 

also allows us to study the local scaling property of the 

individual parameters. Local scaling property can be defined 

as the spatial nature (low/high variability) of an attribute at a 

particular  location  that  changes  as  the  scale  increases  or  
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Fig 1. Grassland leaf area index (LAI) and topographic 

factors-relative elevation, wetness index and upslope length 

in 128 plots as a function of distance along the centre transect 

 

 

 

Fig 2. Natural logarithms of the normalized partition function 

of LAI and the topographic factors plotted against natural 

logarithms of the measurement scales. Clockwise from the 

upper left graph-LAI, wetness index, upslope length and 

relative elevation. 

 

decreases. A multifractal soil attribute will have different 

local fractal properties (i.e. different type of singularities) 

whereas monofractal ones will have the same local fractal 

properties and multifractal spectrum (f(α)) reduced to one 

point (Wang et al., 2009). The width of the spectrum (i.e., 

high αmax−αmin value) suggests the variability in the local 

scaling indices of the variable (Zeleke and Si, 2006). 

Whereas the height of the spectrum, f(q) corresponds to the 

dimension of these scaling indices. Note that the small f(q) 

values refer to rare events (extreme values in the distribution) 

whereas the largest value is the capacity dimension that is 

obtained at q=0. The distribution of upslope length has the 

widest spectrum {(αmax−αmin) = 0.924} followed by wetness 

index {(αmax−αmin) = 0.581} and LAI {(αmax−αmin) = 0.573} 

(Fig. 4). The narrowest spectrum {(αmax−αmin) = 0.081)} 

belongs to relative elevation. 

 

Joint multifractal analysis 

 

Scaling property of the joint distribution of the biophysical 

and topographic parameters was analyzed with joint 

multifractal analysis to assess the above observations (Fig. 5). 

On each plot the contour lines represent the joint dimensions, 

f(α,β) of the pair of the variables. The bottom left part of the 

contours exhibits the joint dimension of the high data values 

of the two variables, while the top right part represents the 

low data values (Zeleke and Si, 2006). The diagonal contours 

with low stretch indicate strong correlation between values 

corresponding to the variables in the vertical and horizontal 

axes (Si and Kachanoski, 2000; Zeleke and Si, 2004). A 

strong relationship between the scaling indices (local scaling 

exponents) of LAI and two topographic factors wetness index 

(WI) and upslope length can be observed. In both plots, the 

contour lines were diagonal and pulled together indicating 

that the high and low scaling indices of LAI were associated, 

respectively, with the high and low scaling indices of wetness 

index and upslope length. This is in agreement with the 

correlation coefficient values calculated at single scale and 

multiple scales. The correlation coefficients of the scaling 

indices of LAI and WI, upslope length are 0.873 and 0.80 

respectively (significant at P < 0.001). LAI and relative 

elevation show negative correlation (r = -0.115, P < 0.001) at 

multiple scales which is also consistent with the observed 

correlation at a single scale. 

 

Discussion 

 

In this study, multifractal and joint multifractal techniques 

were used to analyze the spatial relationships between LAI 

and topographic parameters. Our results demonstrate strong 

positive correlations between LAI and wetness index and 

upslope length and a negative correlation between LAI and 

relative elevation. LAI is a key indicator of the primary 

productivity of the grassland ecosystem. Thus, the significant 

correlation among LAI and topographic factors implies that 

grassland productivity largely depends on the topography and 

this is in agreement with a previous study (He et al., 2007). 

Sellers et al. (1997) found that soil water content largely 

depends on the amount of precipitation accumulation, 

redistribution, and runoff. Thus, the strong associations 

between leaf area index and wetness index and upslope 

length found in this study are expected. Wetness index 

reflects the steepness of the slope as it is the ratio of the 

upslope length and the local terrain at a particular point. 

Accumulation of snow and snowmelt water at a point mainly 

depends on local slope. Thus, wetness index demonstrates the 

water storage in a location more strongly than other indicat- 
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Fig 3. a) The mass exponent of the variables relative to a 

simulated (solid black rectangle) monofractal distribution(q = 

-15 to +15) using UM model of Schertzer and Lovejoy 

(1987). b) The generalized dimensions (Dq) the studied 

variables(q = -15 to +15 at 0.5 increments), field leaf area 

index, wetness index, relative elevation and upslope length. 
 

 

Fig 4. The multifractal spectra of the studied variables (q = -

15 to +15 at 0.5 increments), field leaf area index, wetness 

index, relative elevation and upslope length. 

 

ors. Soil water regime plays a significant role in soil 

respiration (Davidson et al., 1998), decomposition and 

mineralization rates (Rodriguez-Iturbe et al., 1999) and the 

nutrient-uptake rate of plants in semi-arid environments, 

which in turn determine the diversity of grassland vegetation. 

Topography affects soil organic matter distribution which is 

the key environmental factor regulating grassland vegetation 

at the landscape scale (Swanson et al., 1988). Topographic 

factors also influence the absorption and reflectance or 

emission of radiation by the surface, which regulate 

photosynthesis of plants. Thus, topography plays a major role 

in controlling soil water content, solar radiation, and soil 

organic matter content in grassland ecosystems which in turn 

contribute to the spatial heterogeneity of LAI. Joint 

multifractal analysis showed strong associations between the 

scaling indices of LAI and wetness index, upslope length 

which indicates that the relationships between these variables 

are valid across all spatial scales and that the spatial 

heterogeneity in one variable is well-reflected in the 

variability of the other. Hence, the relationships between 

biophysical properties and topographic indices should be 

considered at multiple spatial scales. Traditional statistical 

techniques can only explain the relationships at a fixed scale. 

Wavelet method used by He et al. (2007) found spatial 

correlation between LAI and topography at certain scales and 

thus failed to substantiate these associations across all scales. 

Estimation or mapping performed on the basis of single scale 

information derived from traditional statistical techniques 

may be biased. The joint multifractal analysis used in this 

study can be particularly useful for grassland managers and 

researchers to investigate correlations at all spatial scales. 

Leaf area index can be viewed as a surrogate of ecological 

functioning and net turnover of grassland ecosystem. Power–

law associations of LAI in grasslands are the key features of 

self-similarity or fractal phenomena of biophysical 

properties.. Multifractal analysis based on the power-law 

distribution provides a framework for upscaling or 

downscaling. Though it is common knowledge that 

variability of one variable or relationships between two 

variables are scale-dependent and there are many techniques 

available for identifying that; multifractal analysis explicitly 

gives relationships between statistical moments and the scale, 

thus provides a tool for predicting the statistical moments 

(such as variance) at the scale of interest. Biophysical 

variables can be easily measured at small scales (plot scales) 

or large scales (through remote sensing). However, the 

medium scale information is hard to obtain but relevant to 

management and monitoring. Therefore, some sort of 

upscaling (from plot scale) or downscaling (from large scale) 

is needed and the power law scaling (multifractal) makes it 

possible. For example, if we know the variance of LAI at 6 m 

for leaf area index, we would know the variance at 12 m 

given the power-law distribution. Correlation and regression 

analyses examine at the measurement scale (sample size) 

how two variables are related. There is positive Pearson 

correlation between two variables if two variables have high 

values at a location. Conversely, there is a negative 

correlation between two variables if one variable has a high 

value and other variable tends to have a low value at a 

location. For joint multifractal, there will be a strong joint 

exponent (f(α,β)) if two variables are both highly intermittent 

(variable) at a particular location, although there may be a 

weak Pearson correlation. The strong joint exponent may 

suggest that the two variables have the same underlying 

controls. On the other hand, there will be a weak joint 

exponent if one variable is highly variable and other is very 

smooth around a location, which means that the two variables 

do not share the same control. Therefore, joint multifractal 

and linear correlation analyses focus on different aspects of 

spatial data. For management and monitoring purposes of 

grassland ecosystem, the joint multifractal analysis may be 

more relevant. Multifractal analysis can zoom-in extreme 

high and low values. In grassland ecosystems, extremely high 

or low turnover of a particular location may suggest 

difference in richness and abundance in species or patchy 

growth for species due to unusual nutrient and/or moisture 

availability. The joint multifractal analysis considers the 

location-specific joint variability of two variables. If an 

attribute is homogeneous at a particular location, the 

regulatory  factors  are  most  likely  homogeneous.  Thus,  it  



762 

 

 

Fig 5. The multifractal spectrum of the joint distribution of 

field leaf area index (vertical axis) and three topographic 

factors- wetness index (WI), upslope length and relative 

elevation (horizontal axis). Contour lines show the joint 

distribution of the two scaling indices (q,t) and (q,t). 

 

highlights the importance of consistency of the topographic 

indices to achieve consistent productivity. 

 

Conclusions 

 

Leaf area index and the studied topographic factors, and their 

relationships are highly scale dependent and should be 

considered at multiple spatial scales. For monitoring and 

management of semiarid grassland ecosystems, the satellite 

images taken at a large scale may not correspond to ground 

measurements at a small scale. For mono-fractal soil 

properties (such as relative elevation), upscaling from small 

scale measurements to large-scale applications can be carried 

out at any moment order (for both high and low data values) 

with the same scaling exponent. For multifractal ones (such 

as LAI), however, scaling transformation can be conducted, 

but needs different scaling exponent for different moment 

order (for only high or low data values). Therefore, upscaling 

for LAI and wetness index would be much more demanding 

in data than that for elevation. This becomes particularly 

important when matching of ground truth and satellite image 

data is needed. 
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