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Abstract  

 

The Female Index (FI) is a relative measure of host suitability of a soybean line for a particular nematode population and often shows 

a non-normal distribution. Moreover, most quantitative trait loci (QTL) mapping methods assume that the phenotype follows a 

normal distribution such as composite interval mapping (CIM). Therefore, a generalized linear modeling (GLM) approach was 

employed to map QTL for resistance to race 9 of the soybean cyst nematode (SCN) using a total of 83 simple sequence repeat 

markers (SSR). Two GLM models were tested: model 1, where the FI was treated as a continuous variable, assuming a Gamma 

distribution with a logarithmic link function; and model 2, where the FI was treated as a categorical trait in a five-item hierarchy, 

assuming a multinomial distribution with a cumulative logit link function. The FI data of 108 recombinant inbred lines (RIL) 

confirmed the non-normal distribution for race 9 of the SCN (Shapiro-Wilk’s w=0.86, P<0.0001, skewness=1.52 and kurtosis=2.93). 

Eight RIL were confirmed to be resistant (FI≤10), and 23 to be highly susceptible (FI≥100). Both GLM models identified one QTL 

for SCN on the molecular linkage group G, between the markers Satt275 and Satt038 at 48.4 centiMorgans (P=0.017 and 0.033, for 

models 1 and 2, respectively). Additionally, these results were compared with the CIM and Bayesian interval mapping (BIM) 

methods, assuming experimental data with a non-normal response, to determine the robustness and statistical power of these two 

methods. The results make clear that generalized linear modeling approach can be used as an efficient method to map QTLs in a 

continuous trait with a non-Gaussian distribution. CIM and BIM were robust enough for a reliable mapping of QTLs underlying 

nonnormally distributed data. 
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Introduction 

 

Heterodera glycines Ichinohe, commonly known as the 

soybean cyst nematode (SCN) is the most devastating 

pathogen of soybeans (Glycine max L. Merr.) globally. It is 

present in most soybean producing countries, and results in 

annual yield losses of approximately US$1.5 billion in the 

United States alone (Wrather and Koenning, 2006). Several 

SCN races have been reported in different countries including 

the USA, Argentina, Brazil, China, Japan, and Russia (Ye, 

2012). The soybean has become the most important Brazilian 

agricultural product in recent years. Brazil is the world’s 

second largest producer of soybeans, and production is 

growing at twice the global rate (Goldsmith and Hirsch, 

2006). The SCN was first found in the growing season of 

1991/92 (Matsuo et al., 2012). Eleven SCN races (1, 2, 3, 4, 

4+, 5, 6, 9, 10, 14 and 14+) have been detected in ten states, 

with an estimated area of over 2.0 million hectares 

(EMBRAPA, 2008). The grain yield losses in these states can 

reach 90% depending on the degree of infestation, cultivar 

susceptibility, soil fertility and the nematode race (Dhingra et 

al., 2009). However, cultivars available for cropping in Brazil 

have shown high resistance only to races 1 and 3 and 

moderate resistance to the other races (EMBRAPA, 2006). 

With the large number of SCN races identified in Brazil, 

there is a great interest in conducting Marker-Assisted 

Selection (MAS) for SCN resistance in Brazilian breeding 

programs. Understanding the nature of soybean resistance is 

needed to develop SCN-resistant varieties. Molecular 

mapping of resistance to SCN using SSR markers provides a 

powerful tool for the characterization of the genetic basis of 

soybean resistance (Guo et al., 2005). MAS can be less time-

consuming than phenotypic selection and can select for a 

greater number of genotypes that carry resistance genes to 
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several SCN races (Cervigni et al., 2007). The Female Index 

(FI) is a relative measure of host suitability of a soybean line 

for a particular nematode population, and this index has also 

been used to describe the vulnerability of soybeans to damage 

by the nematode (Young, 1990). However, there is a 

challenge in data analysis because the FI usually shows a 

non-normal distribution (Guo et al., 2005; Cervigni et al., 

2007; Wu et al., 2009; Ferreira et al., 2011) although the 

effect of non-normality on quantitative trait loci (QTL) 

mapping data analysis is expected to be significantly reduced 

due to the use of cofactor markers in composite interval 

mapping (CIM) developed by Zeng (1993) and permutation 

tests for the determination of threshold values (Churchill and 

Doerge, 1994). Interval mapping methods are the most 

commonly used method for mapping QTL, and typically 

apply to quantitative traits that have a continuous, normal 

distribution. In agricultural crops, the phenotypes of some 

traits are measured as discrete variables. For example, traits 

measured as counts are usually modeled by the Poisson 

distribution. Binary traits are also common in agricultural 

experiments (Coffman et al., 2005; Mora and Serra, 2014). 

The accuracy of QTL mapping must, therefore, be as high as 

possible (Mora et al., 2010; Arriagada et al., 2012). Although 

some transformations can be used to improve the normality 

of traits, not all traits can be transformed (Xu and Hu, 2010). 

The generalized linear model (GLM) approach was 

developed in 1972 by Nelder and Wedderburn (1972). It is 

based on exponential distributions (termed “exponential 

family distributions”), and uses methods similar to traditional 

linear modeling for normal data distribution (Myers et al., 

2002). The GLM approach is the most appropriate method 

for analyzing traits with non-normal distributions and has 

been widely applied to map QTL for special traits (e.g., 

binary traits (Yi and Xu, 2000; Deng et al., 2006), ordinal 

traits (Hackett and Weller, 1995; Rao and Xu, 1998) and 

Poisson traits (Cui et al., 2006; Cui and Yang, 2009). In this 

study, a generalized linear modeling approach was applied to 

map QTL underlying the resistance of soybean to Race 9 of 

the cyst nematode, as the assumption of normality of the 

female index data was not met. Additionally, we compared 

the results of the GLM evaluations to the CIM and Bayesian 

methods, assuming experimental data with a non-normal 

response. 

 

Results and Discussion 

 

Linkage analysis and genetic map 

 

Twenty-four markers showed distortion of the Mendelian 

segregation (1:1), and thus, 120 markers were included in the 

analysis (Supplementary table 1). Eighty-three SSR were 

grouped into 22 LGs of the genome (Fig 1), which represent 

the genomic segments of 15 LGs of the soybean consensus 

linkage map (Song et al., 2004). Similar results were obtained 

by Ferreira et al. (2011), who found approximately 20% 

distortion, and obtained eighty SSR that represented genomic 

segments of 17 LGs of the soybean consensus linkage map. 

This distortion is frequent in several crops, including 

soybean. Many markers did not link to any LG, due to their 

great distances from the other markers, over 40 percent of 

recombination frequency in the same linkage group, or 

belonged to an LG that was not represented by any other 

marker according to the consensus map (Ferreira et al., 

2011).  

 

QTL analysis  

 

In the Bayesian results, posterior frequencies for the number 

of QTLs, performed by 1 million RJ-MCMC iterations, 

confirmed the presence of one QTL on the LG G. The 

estimates of posterior modes, calculated using the Kernel 

density estimation method (and 95% credible intervals) for 

the posterior distributions of additive variance, additive effect 

and heritability of the QTL were 0.19 (0.06; 0.81), -20.1 (-

30.5; -8.9) and 0.15 (0.03; 0.32), respectively. This result 

agrees with the CIM analysis, in which the QTL, identified 

between markers Satt275 and Satt038 on the LG G, explains 

20% of the phenotypic variance, and also agrees with 

previous reports (Cervigni et al., 2007; Ferreira et al., 2011). 

Fig 2 shows the posterior frequencies of the LG G with the 

most likely number of QTL. The BIM and CIM agree with 

GLM-M and GLM-G methods, indicating that the BIM and 

CIM were fairly robust in erroneously assuming the non-

normal data of FI. In recent years, many QTLs associated 

with resistance to SCN have been identified (Concibido et al., 

2004; Guo et al., 2006). The QTL identified in our study has 

been associated with the rhg1 gene on chromosome 18 (Kim 

and Diers, 2013). That locus was detected in many previous 

reports and was considered to be one of the major genes 

conferring resistance to SCN (Chang et al., 2011). According 

to Cervigni et al. (2007), at least two genes participate in the 

resistance to race 9. In addition, rhg1 and Rhg4 are necessary 

to confer nearly complete resistance to SCN race 3 and 14 

(Afzal et al., 2009; Chang et al., 2011). The rhg1 gene has the 

greatest impact on the development of SCN from all races in 

several resistance cultivars including Hartwig (Ferreira et al., 

2011; Kandoth et al., 2011). According to previous reports, 

the LG G has the largest number of QTLs associated with 

SCN resistance to different races, but in different positions on 

the LG G. Additionally, rhg1 has been involved to defense 

against various stresses. For instance, Kandoth et al. (2011) 

presented evidence for the potential involvement of a 

complex stress- and defense-related response, including 

increased expression of genes involved in the production of 

ROS, the unfolded protein response, salicylic acid mediated 

signaling, and plant programmed cell death in rhg1-mediated 

resistance to SCN. Their study demonstrates that a network 

of molecular events take place during rhg1-mediated 

resistance, leading to a highly complex defense response 

against a root pathogen, which explains its involvement in 

resistance to several SCN races. Recently, by sequencing 

analysis rhg1 was discovered to be a complex locus at which 

resistance-conferring haplotypes carry up to 10 tandem repeat 

copies of a 31-kb DNA segment (Cook et al., 2014). Cook et 

al. (2012) also determined that three very tightly linked genes 

at rhg1 contribute to SCN resistance, and encode a predicted 

amino acid transporter (Glyma18g02580), an a-SNAP protein 

predicted to participate in disassembly of SNARE membrane 

trafficking complexes (Glyma18g02590), and a protein with 

aWI12 (wound-inducible protein 12) region but no 

functionally characterized domains (Glyma18g02610). 

Furthermore, the DNA encoding these genes is present in 

multiple copies in SCN-resistant parents, and this causes 

elevated expression of the genes. Two of the identified genes, 

Glyma18g02580 and Glyma18g02610 , did not carry amino 

acid polymorphisms between resistant and susceptible rhg1 

haplotypes. However, Glyma18g02590 contain amino acid 

polymorphisms relative to the reference soybean genome 

Williams 82, which is SCN-susceptible (Cook et al., 2014).  
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Table 1. QTL detection details for SCN resistance on linkage group G (three first SSR intervals are shown), which were determined 

using a generalized linear modeling approach. 

SSR interval 
Position 

(cM) 

GLM-M GLM-G 

Wald 

2
 P > 

2
 Wald 

2
 P > 

2
 

Satt163 - Satt275 0.000 0.00 0.990 0.01 0.918 

 

0.050 0.00 0.983 0.00 0.952 

 

0.100 0.00 0.945 0.00 0.999 

 

0.200 0.05 0.828 0.03 0.861 

 

0.300 0.14 0.706 0.13 0.719 

  0.305 0.15 0.702 0.13 0.714 

Satt275 - Satt038 0.305 3.69 0.055 3.30 0.069 

 

0.355 3.96 0.047 3.94 0.047 

 

0.405 4.23 0.040 4.70 0.030 

 

0.435 4.37 0.037 5.14 0.023 

 

0.455 4.45 0.035 5.41 0.020 

 

0.465 4.48 0.034 5.53 0.019 

 

0.475 4.51 0.034 5.63 0.018 

  0.484 4.53 0.033 5.72 0.017 

Satt038 - Sat_163 0.484 0.78 0.378 2.65 0.103 

 

0.534 0.79 0.374 2.65 0.104 

 

0.584 0.81 0.370 2.64 0.104 

 

0.684 0.86 0.354 2.58 0.108 

 

0.784 0.94 0.332 2.27 0.132 

 

0.884 0.61 0.435 0.52 0.471 

  0.942 0.29 0.589 0.00 0.956 
GLM-M: generalized linear model in which the FI was treated as a categorical trait (Multinomial distribution and cumulative logit link function). GLM-G: the FI was 

treated as a continuous variable (Gamma distribution and logarithmic link function). 

 

 

 
Fig 1. Linkage map constructed using a RIL population (F6:7) derived from the cross Hartwig × Y23. QTL underlying the resistance 

of soybean to race 9 is indicated by a bar on the right of linkage group G. Marker names and genetic distances (in cM) are shown on 

the right and left, respectively. 

 

 

 
Fig. 2. Posterior frequencies for the number of QTLs carried out by 1 million iterations of the Reversible Jump method. 
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Fig 3. Linkage group G, showing the power of three methods 

for detection of QTL using non-normal distribution data. 

Generalized linear model (GLM), Bayesian interval mapping 

(BIM) and Composite interval mapping (CIM). 

 

 

Recently, Matsye et al. (2012) suggested that an amino acid 

polymorphism in the Glyma18g02590 contributes to SCN 

resistance given that, the SNAP protein is likely involved in 

vesicle trafficking and may influence exocytosis of products 

that alter feeding site development or nematode physiology 

(Frei dit Frey and Robatzek, 2009) 

 

Power and accuracy of QTL detection 

 

The accuracy of the QTL position, however, was dependent 

on the mapping method used. While the models GLM-M and 

GLM-G identified the major QTL at 48.4 cM (P=0.017 and 

0.033, for models 1 and 2, respectively, Table 1), the BIM 

and CIM methods identified the QTL at 42.5 cM (posterior 

mean) and 43.5 cM, respectively (Fig 3). Moreover, this QTL 

for race 9 has been mapped in the same interval in previous 

studies using the CIM method at 3.0 cM from marker Satt038 

(Cervigni et al., 2007; Ferreira et al., 2011). Additionally, the 

marker Satt038 has also been mapped close to the rhg1 gene 

in several studies (Kazi et al., 2010; Kim and Diers, 2013). 

The accuracy of QTL mapping must be as high as possible 

(Mora et al., 2008). The power and precision of QTL 

mapping depends on the coverage of linkage maps for QTL 

analysis, given that the distance between the markers affects 

the position of the QTL. Mayer et al. (2004) for example, 

found that the reduction of the marker interval size from 10 

cM to 5 cM led to a higher power in QTL detection and their 

effect estimates, as well as a remarkable improvement of the 

QTL position estimation. An adequate statistical procedure is 

also important to improve accuracy. Mora et al. (2010) 

compared the GLM and CIM methods with simulated data 

with a Gamma distribution, and found that the QTL position 

differed by 5 cM and was located at different marker 

intervals. They concluded that the GLM method has superior 

performance in its ability to map QTL in a trait with a non-

Gaussian distribution. Moreover, Yin and Zhang (2006) 

showed that the GLM approach had certain advantages such 

as power of detection and QTL position estimation for 

ordinal traits, given that the QTL position obtained by the 

GLM approach was closer to the true value with smaller 

standard errors than that obtained by the linear model 

approach. Kadarmideen et al. (2000) compared generalized 

interval mapping for binary traits with linear regression 

interval mapping, and both methods had a similar power to 

detect the QTL and similar estimates of QTL location and 

effects. The results of these studies agree with our results; the 

QTL position varied between 2.5 and 7.4 cM. According to 

Yin and Zhang (2006), the accuracy of QTL position 

estimates increases with the increases in the heritability and 

QTL effect. Currently, there is little available information on 

the heritability of this locus that controls resistance to SCN 

race 9. However, Ferreira et al. (2011) determined that the 

heritability of the resistance to SCN race 9 in Hartwig is 

approximately 0.34 and our results indicated a moderate 

heritability of the QTL identified (h2 = 0.15). Therefore, in 

this context, the QTL detected in this study explains a 

significant percentage of the total heritability of the resistance 

trait (~ 40%). Moreover, the QTL contributed a large 

proportion of the additive effect (20%), which is similar to 

other reports (Concibido et al., 2004; Guo et al., 2006; 

Cervigni et al., 2007; Wu et al., 2009). Therefore, similar 

results for the three methods used in this study may be due to 

the moderate heritability and the additive effect.  

 

Discussion 

 

Methods and data distribution 

 

The problems underlying QTL mapping have been 

summarized by Banerjee et al. (2008). For example, the 

predictor variables in the regression are not observed, and the 

genomic loci on the same chromosome are correlated. 

Complex traits, involving the participation of multiple genes 

and the mapping of QTL, requires inference of the genetic 

architecture (number of genes, their positions, and their 

effects) underlying these complex traits. According to Li et 

al. (2007), from a statistical perspective, different methods 

for QTL mapping are based on three broad classes: 

regression, maximum-likelihood and Bayesian models. These 

methods include the analysis of variance (ANOVA), Interval 

mapping (IM), CIM, multiple interval mapping (MIM), 

mixed linear models and BIM (Wu et al., 2009; Peixoto et al., 

2014). Most markers or QTLs associated with SCN resistance 

that were identified in prior studies used ANOVA (Silva et 

al., 2007) and the IM method (Schuster et al., 2001). The 

CIM method has been commonly used in recent SCN QTL 

mapping investigations because the IM method can distort 

the QTL position and effects when there are multiple QTLs 

in the linkage group (Wu et al., 2009). However, most QTL 

mapping methods share a common assumption, which is, the 

phenotype follows a normal distribution; however, many 

phenotypes of interest do not satisfy this assumption (Yin and 

Zhang, 2006). According to our results and those from other 

reports, the GLM approach is an efficient method to map 

QTL and is particularly suited to address discrete traits or 

other traits deviating from a normal distribution. 

Furthermore, according to Rao and Xu (1998), the power and 

accuracy of QTL parameter estimation can be reduced 

substantially if a categorical trait is analyzed using linear 

models (Che and Xu 2012). However, the advantage of the 

GLM method is related to the number of categories of the 
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trait. For binary traits, the GLM method was more 

advantageous than for the four-category trait (Yin and Zhang 

2006). 

 

 Materials and Methods 
 

Plant material and SCN assay 

 

A population of 180 F6:7 recombinant inbred lines (RILs) 

from a cross of cv. Hartwig (resistant) and line Y23 

(susceptible) was used in this study. This population was 

developed from F2 plants obtained from five F1 plants selfed 

until the F6 generation using the Single Seed Descent (SSD) 

method (Brim, 1966). The response to race 9 of the SCN was 

evaluated on 108 RIL. Inoculum of race 9 was maintained on 

the roots of a susceptible variety (cv. Peking) growing in the 

greenhouse at 25°-30°C. The seeds were germinated in sand 

at 25°C. Each seedling, at two to three days of age, was 

transplanted into clay pots with a 0.5 L capacity (filled with a 

1:2 mixture of soil and sand), then, each plant was inoculated 

with 4,000 SCN eggs according to the method of Dias et al. 

(2009). The soybean plants were grown in a greenhouse at 

25-30°C under long-day conditions (16 h light). Thirty days 

after inoculation, plant roots of each RIL were washed with 

tap water and cysts were collected on 60 mesh sieves. The 

experiment was carried out in a completely randomized block 

design with three to six plants per treatment (RIL). Cysts 

were counted and transformed into the FI, estimated by: FI = 

100 (number of cysts and females in a given plant / average 

number of cysts and females present on Y23). The FI was 

also calculated to confirm the identity of the inoculated races, 

according to the method of Riggs and Schmidt (1988). 

 

DNA extraction and genetic map 

 

DNA samples were extracted from soybean leaves using the 

CTAB method (Keim et al., 1988), quantified in a 

spectrophotometer, and stored at -20°C until use. A total of 

144 microsatellite markers (http://www.soybase.org) were 

initially used. DNA amplification was performed in reactions 

containing 30 ng DNA, 10 mM Tris HCl (pH 8.3), 50 mM 

KCl, 2.4 mM MgCl2, 0.1 mM of each dNTP, 0.6 μL of 

forward and reverse primers and 1 unit of Taq DNA 

polymerase. Amplifications were performed in 30 cycles, 

each consisting of one denaturation step at 94ºC for 1 min, 

one annealing step at 50ºC for 1 min, and one extension step 

at 72ºC for 2 min. The final cycle was followed by a 7 min 

extension step at 72ºC. The SSR products were resolved in a 

3% agarose gel immersed in TBE (90 mM Tris-borate buffer; 

1 mM EDTA, pH 8.0), or in a vertical, non-denaturing, 10% 

polyacrylamide gel using TAE buffer (40 mM Tris- Acetate 

buffer, 1 mM EDTA). Gels were stained with ethidium 

bromide (10 mg/ml) and photodigitalized using the Eagle Eye 

II system (Stratagene, La Jolla, CA) according to the method 

of Cervigni et al. (2007). Markers were tested for segregation 

distortion using the chi-square test. Markers with segregation 

ratios significantly different from 1:1 (P < 0.05) were initially 

set aside (Supplementary table 1). The genetic map was 

constructed with Mapmaker/exp version 3.0 (Lincoln and 

Lander, 1993). Linkage groups were established with a 

threshold LOD score of 3.0 and a maximum recombination 

frequency of 0.4. The Kosambi mapping function was 

employed for map length estimations. The genetic map was 

drawn using the WinQTLCart 2.5 program (Wang et al., 

2011). 

 

 

QTL mapping 

 

The statistical procedure, the generalized linear model 

(GLM), was used to map a QTL controlling SCN Race 9, as 

the assumption of normality of the female index data was not 

met (Shapiro-Wilk’s w=0.86, P-value<0.0001; skewness= 

1.52, kurtosis=2.93). Two GLM models were tested: model 

1, where FI was treated as a continuous variable, assuming a 

Gamma distribution with a logarithmic link function; and 

model 2, in which FI was treated as a categorical trait to 

quantify the effect of heterogeneity on disease incidence 

relationships in a five-item hierarchy. The hierarchy was as 

follows: 1, resistant (IF≤10); 2, moderately resistant (IF=11-

30); 3, moderately susceptible (IF=31-60); 4, susceptible 

(IF=61-99) and 5, highly susceptible (IF≥100). This 

categorical trait assumes multinomial distribution with a 

cumulative logit link function. 

The density and probability function for the observed 

response (y) can be expressed as:  











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)(
exp);;( 


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ii yc
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by
yf , 

where )(ia , )( ib   and ),( iyc  are specific functions. 

The parameter   is related to the mean of the distribution, 

and  , the dispersion parameter, is known and is usually 

related to the variance of the distribution (Myers et al., 2002). 

Assuming a GLM model for QTL analysis with an 

exponential family distribution, the following general model 

was constructed around the linear predictor to test for a QTL 

located in the interval between markers i  and 1i : 





c

1ii,k

jkk

*

j

*

0j xbxbbη , 

where c is the number of markers selected, 0b  is the 

intercept, b* is the effect of the putative QTL in the interval 

between markers i  and 1i , 
*

jx  is an indicator variable, 

kb  is the partial regression coefficient of the phenotype on 

the kth marker, jkx  is a known coefficient for the kth 

marker in the jth individual. The model is found through the 

use of a link function: )g(μη ii  , where iμ  is the 

expectation of the response variable (Myers et al., 2002). 

GLM models were run in the GENMOD procedure of SAS. 

Co-factors were previously determined using the same 

procedure, but without the additive effects of the putative 

QTL for each genetic linkage group independently. The chi-

square of the Wald test was used to test for statistical 

significance of the QTL (or the additive effect of the putative 

QTL) according to the method of Myers et al. (2002). 

The GLM method was compared with the Composite 

Interval Mapping (CIM) and the Bayesian interval mapping 

(BIM) methods, assuming experimental data with a non-

normal response, in the program WinQTLCart 2.5. The CIM 

analysis was conducted using Model 6 with forward and 

backward stepwise regression, a window size of 10 

centiMorgans (cM), five control markers and scanned at 1 

cM (Wang et al., 2011). The LOD thresholds to declare 

significant QTLs were set at 2.4 based on 1,000 permutation 

tests and a type I error of 5% (Churchill and Doerge, 1994). 

For the BIM, the posterior marginal parameter distributions 

were computed using the Reversible Jump Markov Chain 

http://www.soybase.org/
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Monte Carlo (RJ-MCMC) algorithm. A Poisson distribution 

was assumed for the number of QTL, according to the 

method of Silva and Leandro (2009).  

 

Conclusion 

 

In summary, given that the female index is often non-

normally distributed, the generalized linear modeling 

approach can be used as an efficient method to map QTLs in 

a trait with a non-Gaussian distribution. The five-item 

hierarchy proposed for the female index (treated as a 

categorical trait) was useful for mapping purposes, and the 

results agreed with the GLM method assuming data with a 

Gamma distribution. We also want to highlight that the BIM 

and CIM were fairly robust in erroneously assuming the non-

normal data of FI. 
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