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Abstract 

 

Pasture and grain crop intercropping is considered an alternative for increasing biomass production during the winter periods in 

Brazil for the establishment of no-tillage systems. We studied nitrogen (N) fertilization rates in a corn-palisadegrass intercropping 
system that would allow both corn and biomass production without a reduction in corn yield. A field trial was carried out in São 

Desidério, Bahia - Brazil using a complete block experimental design with a 5 x 2 factorial layout with two factors: N rate (control, 

50, 100, 150, and 200 kg ha-1 N) and two cropping systems (corn with or without palisadegrass). Both corn and palisadegrass were 

sown simultaneously with N fertilizer applied at sowing. The measurements included corn biomass, grain yield and N uptake. In 
addition, palisadegrass biomass was assessed at corn harvest and at three consecutive times during the winter. There was an 

interaction between N rates and the intercropping system. Grain yield was affected by intercropping when N fertilizer rates were 

lower than 100 kg ha-1, but above that rate, corn grain yield reached 10,000 kg ha-1 and was similar with or without palisadegrass. 

Nitrogen fertilizers also positively affected corn N uptake. There was no residual effect of N fertilization on palisadegrass biomass 
production during the sampling periods. However, the biomass of the palisadegrass increased during the winter period and reached 

5,000 kg ha-1 of dry matter by the following season. There was no corn yield reduction when corn was intercropped with 

palisadegrass using nitrogen rates above 100 kg ha-1. In addition, it is possible to increase biomass production for the establishment 

of no-tillage systems in Brazil.  
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Introduction 

 

Plant intercropping is an important technique in the crop-

livestock integration system (CLI) for the establishment of 
pastures, for forage production in the off-season or for 

attaining residues for use in no-tillage production in the next 

season. With this technique, it is possible to achieve greater 

production of vegetal biomass to cover the soil (Borghi et al., 
2012; Ceccon et al., 2013; Crusciol et al., 2013), and it also 

allows the establishment of pastures for livestock (Crusciol et 

al., 2012; Fisher et al., 2012; Borghi et al., 2013). This 

technique can provide many benefits for the soil-plant 
system, such as reducing soil loss by erosion (Montenegro et 

al., 2013; Lima et al., 2014), a reduction in the occurrence of 

weeds (Amossé et al., 2013; Scopel et al., 2013) and the 

maintenance of a vegetated area, allowing for greater nutrient 
cycling and the reduction of nutrient loss in the off-season 

(Fraser et al., 2013; Hashemi et al., 2013). 

The CLI technique promotes an increase in the use 

efficiency of the land and natural resources such as water, 
light and nitrogen (N) (Mao et al., 2012; Jannoura et al., 

2014), thus establishing the sustainable management of 

agricultural and livestock production (Bell et al., 2014; 

Crusciol et al., 2014; Lemaire et al., 2014; Salton et al., 

2014).  

For the success of plant intercropping, the competitive 

advantage of the main grain producer plant must be assured. 
One strategy for doing so is to maintain the forage species via 

shading during the cereal production cycle. Competitive 

interactions and synergism between the intercropped plants 

are simultaneous, and for the success of the system, the 
interspecific interactions must promote the growth, nutrient 

absorption and grain yield of the dominant plant while at the 

same time reduce these parameters in the subordinate plant 

during the coexistence period (Zhang and Li, 2003). After 
harvesting the main crop, the secondary plant is able to 

recover its growth and achieve a situation similar to its sole 

cultivation. 

Corn (Zea mays L.) (dominant plant) and palisadegrass 
(Urochloa spp.) (subordinate plant) intercropping is a widely 

used technology in the CLI system in Brazil. With the use of 

appropriate management techniques, the intercropping of the 

two species do not compromise corn yield (Borghi et al., 
2012; Costa et al., 2012; Borghi et al., 2013; Ceccon et al., 

2013). During the coexistence period, palisadegrass has its 

physiological parameters altered via a slower rate of 
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development when compared to its individual cultivation 

(Araujo et al., 2011; Baldé et al., 2011). Still, it is an efficient 
system for the establishment and renewal of pastures because 

70 days after corn harvest, the regrowth of palisadegrass 

presents a biomass establishment similar to palisadegrass 

grown exclusively (Portes et al., 2000). 
One of the barriers to the large-scale adoption of CLI in 

Brazil is the concern from farmers that intercropping corn 

with other species will limit its growth and yield due to 

competition for water, light and nutrients. To ensure the 
necessary nutrition for corn growth and its competitive 

advantage over palisadegrass, nitrogen fertilization must be 

done in a quantity that enhances the growth of corn to 

quickly shade the subordinated crop, among other factors. 
Corn is a highly responsive crop to N and a temporary N 

deficiency in the early stages could jeopardize its efficiency 

and dominance over palisadegrass. Therefore, it is necessary 

to know the dynamics of N in the corn-palisadegrass 
intercropping system for the proper establishment of the CLI. 

At the same time, little is known about the residual effects of 

nitrogen fertilization on the development and establishment 

of grasslands after harvesting the main crop. 
The objective of this research was to assess the effects of 

nitrogen fertilization on the interaction between intercropped 

corn and palisadegrass and the residual effects of N in the 

development of palisadegrass after corn harvest. 
 

Results and discussion 

 

Corn yield 

 

An interaction was observed between doses of N and 

cropping system for grain yield and total dry matter of corn 

(Table 2). For these two variables, the interaction was due to 
palisadegrass undermining the performance of corn plants in 

situations without N or with a low supply of N, but there was 

no effect on corn when N was applied to the system above 

100-150 kg ha-1 (Figure 2a, b). 
The corn yield with palisadegrass with no N application 

was 7,087 kg ha-1, 19% lower than the corn monocrop, which 

was 8,765 kg ha-1. With 50 kg ha-1 of N fertilization, corn 

yield with palisadegrass was 8,999 kg ha-1, 7% lower than the 
corn monocrop, which produced 9,726 kg ha-1. At 100 kg ha-1 

of N fertilization, intercropped corn yielded 10,237 kg ha-1, 

1.5% lower than the corn monocrop (10,389 kg ha-1). 

Fertilization at 150 kg ha-1 of N provided similar yields for 
the cropping systems, with 0.4% higher yield for the corn-

palisadegrass intercropping system (Fig. 2a). Thus, corn yield 

with N rates above 100 kg ha-1 of N were virtually the same 

between the two systems, showing that there was no loss to 
corn yield when corn was intercropped with palisadegrass 

and supplied with an adequate amount of N. 

Similarly, the total dry matter accumulation of corn (grain + 

shoot) followed the same pattern as grain yield (Fig. 2b). 
Corn intercropped with palisadegrass without N fertilization 

and with 50 kg ha-1 of N produced 17% and 9.7% less dry 

matter than the corn monocrop, respectively. At rates above 

100 kg ha-1 of N, dry matter production was similar at 
approximately 20,000 kg ha-1. 

These results show the need for nitrogen fertilization at the 

appropriate time and rate. N enhanced the initial growth of 

corn, which promoted faster shading of palisadegrass and 
thus established palisadegrass as the subordinate plant, an 

essential component to the success of intercropped systems 

(Zhang and LI, 2003). Gava et al. (2010) demonstrated the 

influence of N on biomass accumulation in the early 
development of corn plants. According to these authors, the 

maximum dry matter production rate was achieved 

approximately 46 days after the emergence of corn, which 
was 86 kg ha-1 day-1 with the accumulation of 233 kg ha-1 of 

corn dry matter without an N supply in this period. However, 

with the application of 200 kg ha-1 of N in the same period of 

46 days after emergence, the maximum growth rate was 108 
kg ha-1 day-1 with the accumulation of 374 kg ha-1 of dry 

matter. This demonstrates the positive impact of N in the 

initial growth of the crop, which contributes to the 

competitive advantage of corn over palisadegrass. 
The intercropping of corn and palisadegrass without an N 

supply or with a low amount of N delayed the initial growth 

of corn. There was longer period of sunlight on palisadegrass, 

which increased the photosynthetic rate and water and 
nutrient uptake of palisadegrass. Therefore, the competitive 

potential between species was increased, thus reducing corn 

yield and growth. 

According to regression analysis, corn yield showed a 
quadratic response, which was highly significant according to 

the rates of N in both cropping systems (Fig. 2a). The 

maximum points indicate that the highest yield for 

monocropped corn was 10,805 kg ha-1 at a rate of 186 kg ha-1 
of N. In the corn-palisadegrass intercropping system, the 

maximum yield was 10,836 kg ha-1 at a rate of 167 kg ha-1 of 

N (Fig. 2a). 

The supply of N on corn yield was not affected by the 
presence of palisadegrass, which corroborates the data from 

other studies (Borghi et al., 2012; Costa et al., 2012; Borghi 

et al., 2013; Ceccon et al., 2013). The maximum achieved 

yield was similar among the cropping systems; however, for 
corn intercropped with palisadegrass, the maximum yield was 

obtained at 20 kg N ha-1 less than the corn monocrop system. 

Recently, some authors have reported the ability of 

palisadegrass to retain N in an ammoniacal form in the soil 
via the inhibition of bacteria active in nitrification and thus 

acting as a natural nitrification inhibitor (Subbarao et al., 

2007; Subbarao et al., 2013). This may explain the higher 

maximum yield obtained with a lower N rate in the corn-
palisadegrass intercropping system compared to the corn 

monocrop. The absorption of N in its ammoniacal form 

requires lower energy expenditure for its assimilation in 

relation to its nitrate form (Bloom et al., 1992). It also 
promotes the acidification of the rhizosphere when absorbed 

(Hinsinger et al., 2003), a fact that favors root growth and 

absorption of other nutrients (Bloom et al., 2002; Jing et al., 

2010) and increases microorganism activity in the 
rhizosphere (Mahmood et al., 2005). 

 

N extraction by corn 

 
There was no difference in N extraction by corn shoots 

(Shoots N) according to N rate or cropping system (Table 3). 

However, N extraction by corn grains (Grain N) and total N 

extraction by corn (Total N) responded significantly and 
similarly to the rates and cropping systems, and there was no 

significant interaction between these factors (Table 3). 

Between the two cropping systems, the largest extraction of 

N was in the system without palisadegrass, with 8% more for 
NG and 7% more for NTOT (Table 3). 

The difference between the systems occurred as the 

monocrop system without an N application showed 30% and 

21% more for NG and NTOT than the intercropping system 
without N, which contributed to a higher average extraction 

between the systems (Table 3). On the other hand, comparing 

the systems at the N rate of 200 kg ha-1 of N, this difference 

was 5% and 1% more extraction in the intercropping system  
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Fig 1. Precipitation during 2006/2007 growing season in São Desidério-BA, Brazil. Experimental period during November 2006 

until November 2007. 

 

 
Table 2. Analysis of variance between N rates and system (corn monocrop and corn intercropped with palisadegrass) for yield and 

total dry matter of corn. 

 S.V. Corn Yield Total DM 

Pr>F 

Rate <0.0001 *** <0.0001 *** 

System 0.0018 ** 0.0124 * 

R x S 0.0064 ** 0.0322 * 

CV % 4.93 7.21 
ns not significant, * significant at 5%, ** significant at 1%, *** significant at less than 0.1% probability of error by the F test.  
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Fig 2. Corn grain yield and total dry matter as related to N rates and system (corn monocrop and corn intercropped with 
palisadegrass). *** significant at less than 0.1% probability of error by the F test. 
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Table 3. N extraction in corn grains (Grain N), corn shoot (Shoot N) and all corn plant (Total N) between N rates and system (corn 
monocrop and corn intercropped with palisadegrass).  

System Rate Grain N Shoot N Total N 

 ________________________________ kg ha-1 ________________________________ 

Corn monocrop 

0 95 61 156 

50 119 79 197 

100 119 79 198 

150 121 72 193 
200 141 75 216 

Average  119 A 73 192 A 

Corn intercropped with 

palisadegrass 

0 67 55 122 

50 113 59 172 
100 116 63 180 

150 120 85 205 

200 134 79 213 

Average  110 B 68 178 B 
 Rate <0.0001 *** 0.0799 ns <0.0001 *** 

Pr>F System 0.0276 * 0.2198 ns 0.0323 * 

 R x S 0.4096 ns 0.3171 ns 0.1546 ns 

 CV % 18.27 5.29 10.48 
        ns not significant, * significant at 5%, *** significant at less than 0.1% probability of error by the F test.  
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Fig 3. Nitrogen extraction by corn grains (a), corn shoot (b) and all corn plant (c) as related to N fertilization, on average of both 

cropping systems. ns not significant, * significant at 5% probability of error by the F test. 
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Table 4. Analysis of variance between N rates and sampling periods (date) for palisadegrass dry matter. 

 S.V. Palisadegrass DM 

Pr>F 

Rate 0.0315 * 

Date <0.0001 *** 

Rate x Date 0.9659 ns 
CV % 8.03 

ns not significant, * significant at 5%, *** significant at less than 0.1% probability of error by the F test.  
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Fig 4. Biomass of palisadegrass as related to N rates or periods of sampling (date). * significant at 5%, *** significant at less than 

0.1% probability of error by the F test. 

 
compared to the monocrop system for NG and NTOT, 

respectively, proving the need for nitrogen fertilizer for the 

success of the intercropping system. 

The extraction of N increased linearly according to the N 
rate for NG and NTOT (Fig. 3a, c). These results reflect yield 

because the extraction of N depends on this factor. Once 

yield was higher in a monocrop system without N, N 

extraction follows the same pattern. In the fertilized system, 
productivity was similar between the systems, leading to 

similar N extraction. 

Based on these results, it can be inferred that the 

intercropping of corn and palisadegrass did not affect corn 
nutrition and yield when N was supplied in rates above 100 

kg ha-1. This rate is close to that recommended for corn in 

order to reach its optimal yield (Cantarella et al., 1997). If N 

is supplied in adequate amounts to corn, it will enhance its 
initial development, promote the shading of palisadegrass and 

minimize competition. 

 

Palisadegrass after corn harvest 

 

Dry matter production of palisadegrass was influenced by the 

rate of N and harvest time, and there was no interaction 

between these factors (Table 4). 
The dry matter of palisadegrass was higher without N 

application in the intercropping system. The residual N at any 

evaluated rate did not enhance the growth of palisadegrass 

after corn harvest (Fig. 4a). In the absence of N, corn had its 
initial growth reduced, and it took longer to shade the area 

and suppress the growth of palisadegrass. In this situation, 

palisadegrass accumulated more matter during the 

development of corn, which is an unwanted situation where 
the intercropping system triggers interspecific competition 

with a reduction in corn yield and total dry matter (Fig. 2a, 

b). The palisadegrass yielded 4,447 kg ha-1 dry matter 

without an N application, with a 5.16 kg ha-1 reduction in the 
growth of dry matter for each kilogram of N applied. 

After corn harvest, palisadegrass became the only crop in 

the field and resumed its growth over the days (Fig. 4b) with 

access to photosynthetically active radiation. With the 

average rates of N, palisadegrass had accumulated 2,721 kg 

ha-1 of dry matter at corn harvest, with an increase of 837 kg 

ha-1 in the first 32 days after corn harvest. From the 32nd to 

the 76th day after corn harvest, palisadegrass accumulated 
another 853 kg ha-1 of dry matter, and from the 76th to the 

187th day, it accumulated 622 kg ha-1. On the day of 

desiccation to install the next crop, or 200 days after corn 

harvest, palisadegrass had accumulated 5,034 kg ha-1 of dry 
matter (Fig. 4b). If the drought that occurred in the area 

during the experiment were considered (Fig. 1), this amount 

of biomass would be considered high and similar to that 

reported in other studies (Portes et al., 2000; Pacheco et al., 
2011). 

The residual effects of N applied to corn did not favor the 

growth of palisadegrass after corn harvest since most 

palisadegrass production was under condition without N; 
there was no change in the growth of palisadegrass induced 

by N rates at all assessments after corn harvest (Fig. 4). This 

is an indication that the N applied at the beginning of the corn 

growing season was used primarily by the corn crop, which 
extracted quantities of 180 to 200 kg ha-1 of N in the higher 

rates (Table 3). This result is in agreement with the 

observations made by other authors; in order to get a 

palisadegrass response to N after the corn harvest, a new 
nitrogen fertilization should be carried out (Pariz et al., 2011; 

Borghi et al., 2014). 

This observation confirms that the crop effect caused by 

shading from corn plants, namely, the lack of radiation 
incidence on palisadegrass, is an important factor for 

minimizing interspecific competition. After corn harvest, 

when palisadegrass has access to sunlight, its growth was 

enhanced regardless of the N rate previously applied. 
Nitrogen fertilization is important for grain yield, but in the 

case of the intercropping system, it is essential to promote the 

growth of corn and favor the shading of palisadegrass as 

quickly as possible to avoid a reduction in corn yield via 
competition with palisadegrass. 

The lack of competition between palisadegrass and corn 

when adequate nitrogen fertilization is carried out, as 

observed in this study, is because palisadegrass absorbs very 
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little N when cultured in an intercropping system. The results 

of Almeida (2014) proved that palisadegrass grown in an 
intercropping system absorbs at most 5% of the nitrogen 

fertilizer, while most of the N is absorbed by corn. 

Fernandes et al. (2008) demonstrated that the use of 

residual N in subsequent crops is small and maxed at 3.7%; 
these results corroborate this study since N was essential for 

the increase in corn yield and did not affect the growth of 

palisadegrass after corn harvest. Therefore, corn-

palisadegrass intercropping proved to be an interesting 
strategy that achieved high corn yield while allowing the 

production of vegetal biomass up to 5,000 kg ha-1 of dry 

matter. 

 

Materials and Methods 

 

Plant materials 

 
Urochloa ruziziensis (syn. Brachiaria ruziziensis) was the 

palisadegrass species intercropped with corn (Zea mays) 

hybrid ‘Impacto’. Palisadegrass was sown at a density of 10 

kg seed ha–1 (viable seed = 34%). The corn hybrid was sown 
in 0.76 m row spacing and five plants per meter at a 

population of 60,000 plants ha–1. Each plot consisted of six 

corn rows that were 10 m long (45.6 m2).  

 
Site description 

 

The experiment was carried out in the city of São Desidério, 

Bahia State (BA) - Brazil. The soil of the experimental area 
was classified as Typic Haplustox (USDA, 1999), containing 

140, 210, 200, 210 and 220 g kg-1 of clay in the 0-20, 20-40, 

40-60, 60-80 and 80-100 cm layers, respectively. Chemical 

analyzes were performed according to Raij et al. (2001) and 
the results are shown in Table 1. The local climate is 

classified as Aw according to Köppen, which is characterized 

as hot and humid in the rainy season, and the dry season is 

set in winter. The experimental area is located 840 m above 
sea level, with an average annual temperature of 20 °C and 

an average rainfall of 1,500 mm per year. The monthly data 

on rainfall during the experiment are presented in Figure 1. 

 
Experimental design and treatments  

 

The experimental design used was randomized blocks in a 5 

x 2 factorial scheme with five rates of N (without N, 50, 100, 
150 and 200 kg ha-1 of N) and two cropping systems (corn 

monocrop and corn intercropped with palisadegrass). The N 

source was urea applied only at sowing in a lateral furrow, 

ten centimeters from the corn rows and eight centimeters 
deep. 

 

Crop Management 

 
The palisadegrass was sown between corn rows on the same 

day as corn sowing. At tillering of the palisadegrass, a 

suboptimal rate of nicosulfuron (6 g ha-1) was applied to limit 

the initial growth of palisadegrass and 1,760 g ha-1 of atrazine 
was applied for weed control. The soil was limed before the 

experiment was initiated, and 37 days before corn sowing, 90 

kg ha-1 S and 102 kg ha-1 Ca were applied by broadcast 

application. Seven days before sowing, 100 kg ha-1 P2O5 and 
200 kg ha-1 K2O were applied.  

 

 

 

 

Sampling and evaluations 

 
Corn harvest was performed on May 10, 2007 with the 

assessments made in the central area of each plot. Dry matter 

of the shoots of the corn plants and grain matter were 

determined. Samples were also taken to determine the 
concentration of nutrients and the subsequent calculation of 

N extraction by corn in the shoots (Shoot N) and the grains 

(Grain N) and total N (Total N). To calculate the yield, grain 

moisture was determined and corrected to 130 g of water kg-1 
of dry matter. The first evaluation of palisadegrass occurred 

at corn harvest (May 10) by collecting all the plant material 

from an area of 0.5 x 1.52 m (0.76 m2) located in the center 

of each plot for the determination of fresh matter. A quarter 
of the palisadegrass collected was subsampled to determine 

dry matter after oven drying at 65 °C for 72 hours and was 

sent for an analysis of the nutrients in the plant tissue. This 

procedure was repeated on June 11, July 25 and November 
13 (at 32, 76 and 187 days after the corn harvest). 

 

Statistical procedure 

 
The data were subjected to a homogeneity of variance test 

(Box-Cox) and an analysis of variance. When the F-value 

was significant, regression analysis was used for the 

quantitative factors and a means comparison test (LSD) was 
used for the qualitative factors. Additionally, the necessary 

procedures were performed when there were interactions 

between the factors. 

 

Conclusions 

 

At N rates below 100 kg ha-1 of N, there is competition 

between palisadegrass and corn, resulting in a corn yield 
decrease in the intercropping system. From 100 kg ha-1 of N 

and upwards, there is no yield reduction in corn intercropped 

with palisadegrass. There is no residual effect of nitrogen 

fertilization on the growth of palisadegrass after corn harvest. 
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